999 resultados para Nonequilibrium Transport


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium-phase transition has been studied by Monte Carlo simulation in a ferromagnetically interacting (nearest-neighbour) kinetic Ising model in presence of a sinusoidally oscillating magnetic field. The ('specific-heat') temperature derivative of energies (averaged over a full cycle of the oscillating field) diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition, in the kinetic Ising model in the presence of an oscillating magnetic field has been studied both by Monte Carlo simulation and by solving numerically the mean-field dynamic equation of motion for the average magnetization. In both cases, the Debye ''relaxation'' behavior of the dynamic order parameter has been observed and the ''relaxation time'' is found to diverge near the dynamic transition point. The Debye relaxation of the dynamic order parameter and the power law divergence of the relaxation time have been obtained from a very approximate solution of the mean-field dynamic equation. The temperature variation of appropriately defined ''specific heat'' is studied by the Monte Carlo simulation near the transition point. The specific heat has been observed to diverge near the dynamic transition point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonequilibrium dynamic phase transition in the kinetic Ising model in the presence of an oscillating magnetic field is studied by Monte Carlo simulation. The fluctuation of the dynamic older parameter is studied as a function of temperature near the dynamic transition point. The temperature variation of appropriately defined ''susceptibility'' is also studied near the dynamic transition point. Similarly, the fluctuation of energy and appropriately defined ''specific heat'' is studied as a function of temperature near the dynamic transition point. In both cases, the fluctuations (of dynamic order parameter and energy) and the corresponding responses diverge (in power law fashion) near the dynamic transition point with similar critical behavior (with identical exponent values).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of 100 MeV Oxygen and 200 MeV Silver ions on the structural and transport properties of YBCO thin films are reported. Both normal state and superconducting properties were studied on Laser ablated and high pressure oxygen sputtered films. Precise electrical resistance and critical current measurements near T-c were made and the data obtained were analysed in the light of existing models of para-coherence near T-c and the other aspects of radiation damage arising from microstructural studies such as atomic force microscopy (AFM). There was evidence of sputtering by high energy ions from AFM measurement. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and dynamics of silver ion conducting AgI-Ag2MoO4 glasses have been simulated by molecular dynamics simulation over a wide range of compositions. Formation of silver iodide like aggregates have been identified only in the AgI rich glasses. Increase in silver ion conductivity with an increase in AgI content in the glass is seen as in experiments. The dynamics of ion transport suggests that Ag+ ion transport occurs largely through paths connected by silver ion sites of mixed iodide-oxide coordination. The Van Hove correlation functions indicate that Ag+ ions prefer migration along the pathways formed with connected sites of similar coordination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical conductivity and dielectric relaxation studies with a wide range of compositions of lithium ion conducting glasses belonging to the ternary glass system Li2SO4-Li2O-B2-O3- have been carried out over the temperature range 150-450 K and between 10 - 10(7) Hz. DC conductivities exhibit two different activation regions. This seems to suggest the presence of a cluster tissue texture in these glasses with weakly ordered clusters of Li2SO4 and lithium berates being held together by a truly amorphous tissue of the same average composition as clusters. AC conductivity behaviour of these glasses has been analysed using both power law and stretched exponential relaxation functions. The variation of the power law exponent s and the stretched exponent beta with temperature seems to be consistent with the presence of a cluster tissue texture in these glasses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stationary velocity distribution functions are determined for a particle in a gravitational field driven by a vibrating surface in the limit of small dissipation. It is found that the form of the distribution function is sensitive to the mechanism of energy dissipation, inelastic collisions or viscous drag, and also to the form of the amplitude function of the vibrating surface. The velocity distributions obtained analytically are found to be in excellent agreement with the results of computer simulations in the limit of low dissipation. [S0031-9007(99)08898-5].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: A wide range of compositions of grasses in the ternary Li2O-PbO-B2O3 glass system was prepared, and de and ac conductivity measurements were carried out on these glasses. The presence of lead leads to a decrease in de conductivities and an increase in the activation energies. This is likely to be due to the increase of the partial charges on the oxygen atoms and to the presence of the lone pair on the Pb atom; both of these factors impede lithium ion motion. The ac conductivity and dielectric behavior of these glasses support such a conjecture. (C) 2000 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times antiferroelectric thin-film material compositions have been identified as one of the most significant thin films for development of devices such as high charge storage, charge couplers/decouplers, and high strain microelectromechanical systems. Thus, understanding the dielectric and electrical properties under an ac signal drive in these antiferroelectric thin-film compositions, such as lead zirconate thin films, and the effect of donor doping on them is very necessary. For this purpose, thin films of antiferroelectric lead zirconate and La-modified lead zirconate thin films with mole % concentrations of 0, 3, 5, and 9 have been deposited by pulsed excimer laser ablation. The dielectric and hysteresis properties have confirmed that with a gradual increase of the La content, the room-temperature antiferroelectric lead zirconate thin films can be modified into ferroelectric and paraelectric phases. ac electrical studies revealed that the polaronic related hopping conduction is responsible for the charge transport phenomenon in these films. With a La content of less than or equal to3 mole % in pure lead zirconate, the conductivity of the films has been reduced and followed by an increase of its conductivity for a greater than or equal to3% addition of La to lead zirconate thin films. The polaronic activation energies are also found to follow a similar trend as that of the conductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We drive a d-dimensional Heisenberg magnet using an anisotropic current. The continuum Langevin equation is analysed using a dynamical renormalization group and numerical simulations. We discover a rich steady-state phase diagram, including a critical point in a new nonequilibrium universality class, and a spatiotemporally chaotic phase. The latter may be controlled in a robust manner to target spatially periodic steady states with helical order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the tuning of oxygen content of La0.5Ca0.5MnO3-y and its effect on electrical transport and magnetic properties. A small reduction of oxygen content leads to a decrease in sample resistivity, which is more dramatic at low temperatures. No significant change is seen to occur in the magnetic properties for this case. Further reduction in the oxygen content increases the resistivity remarkably, as compared to the as-prepared sample. The amplitude of the ferromagnetic (FM) transition at 225 K decreases, and the antiferromagnetic (AFM) transition at 130 K disappears. For samples with y=0.17, insulator-metal transition and paramagnetic-ferromagnetic transition occur around 167 K. The results are explained in terms of the effect of oxygen vacancies on the coexistence of the metallic FM phase and the insulating charge ordered AFM phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion conduction and thermal properties of composite solid polymer electrolyte (SPE) comprising Poly(ethylene) Glycol (PEG, mol wt. 2000), lithium perchlorate (LiClO4) and insulating Mn0.03Zn0.97Al2O4 nanoparticle fillers were studied by complex impedance analysis and DSC techniques. The average size of the nanoparticles was determined by powder X-ray diffraction (XRD) using Scherrer's equation and was found to be similar to 8 nm. The same was also determined by TEM imaging and found to be similar to 12 nm. The glass transition temperature T, as measured by differential scanning calorimeter (DSC), showed a minimum at 5 mol% of narroparticles. Fractional crystallinity was determined using DSC. NMR was used to deter-mine crystallinity of a pure PEG sample, which was then used as the standard. Fractional crystallinity X. was the lowest for 5 mol% and beyond. The ionic conductivity of the composite polymer electrolyte containing 5 mol% Mn0.03Zn0.97Al2O4 nanoparticles was found to be 1.82 x 10(-5) S/cm, while for the pristine one, it was 7.27 x 10(-7) S/cm at room temperature. As a function of nanoparticle content, conductivity was observed to go through two maxima, one at around 5 mol% and another shallower one at around 12 mol%. The temperature dependence of conductivity could be divided into two regions, one consistent with Arrhenius behaviour and the other with VTF. We conclude that the enhancement of ionic conductivity on the addition of Mn0.03Zn0.97Al2O4 nanoparticles is a result of reduction in both the T, and the crystallinity. (C) 2002 Elsevier Science B.V. All rights reserved.