996 resultados para Nicolás Factor Beato, 1520-1583-Retratos-Grabado
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
The study assessed whether plasma concentrations of complement factors C3, C4, or immunoglobulins, serum classical pathway hemolytyic activity, or polymorphisms in the class I and II HLA genes, isotypes and gene numbers of C4, or allotypes of IgG1 and IgG3 heavy chain genes were associated with severe frequently recurring or chronic mucosal infections. According to strict clinical criteria, 188 consecutive voluntary patients without a known immunodeficiency and 198 control subjects were recruited. Frequencies of low levels in IgG1, IgG2, IgG3 and IgG4 were for the first time tested from adult general population and patients with acute rhinosinusitis. Frequently recurring intraoral herpes simplex type 1 infections, a rare form of the disease, was associated with homozygosity in HLA -A*, -B*, -C*, and -DR* genes. Frequently recurrent genital HSV-2 infections were associated with low levels of IgG1 and IgG3, present in 54% of the recruited patients. This association was partly allotype-dependent. The G3mg,G1ma/ax haplotype, together with low IgG3, was more common in patients than in control subjects who lacked antibodies against herpes simplex viruses. This is the first found immunogenetic deficiency in otherwise healthy adults that predisposes to highly frequent mucosal herpes recurrences. According to previous studies, HSV effectively evades the allotype G1ma/ax of IgG1, whereas G3mg is associated with low IgG3. Certain HLA genes were more common in patients than in control subjects. Having more than one C4A or C4B gene was associated with neuralgias caused by the virus. Low levels of IgA, IgG1, IgG2, IgG3, and IgG4 were common in the general adult population, but even more frequent in patients with chronic sinusitis. Only low IgG1 was more common chronic than in acute rhinosinusitis. Clinically, nasal polyposis and bronchial asthma were associated with complicated disease forms. The best differentiating immunologic parameters were C4A deficiency and the combination of low plasma IgG4 together with low IgG1 or IgG2, performing almost equally. The lack of C4A, IgA, and IgG4, all known to possess anti-inflammatory activity, together with a concurrently impaired immunity caused by low subclass levels, may predispose to chronic disease forms. In severe chronic adult periodontitis, any C4A or C4B deficiency combined was associated with the disease. The new quantitative analysis of C4 genes and the conventional C4 allotyping method complemented each other. Lowered levels of plasma C3 or C4 or both, and serum CH50 were found in herpes and periodontitis patients. In rhinosinusitis, there was a linear trend with the highest levels found in the order: acute > chronic rhinosinusitis > general population > blood donors with no self-reported history of rhinosinusitis. Complement is involved in the defense against the tested mucosal infections. Seemingly immunocompetent patients with chronic or recurrent mucosal infections frequently have subtle weaknesses in different arms of immunity. Their susceptibility to chronic disease forms may be caused by these. Host s subtly impaired immunity often coincides with effective immune evasion from the same arms of immunity by the disease-causing pathogens. The interpretation of low subclass levels, if no additional predisposing immunologic factors are tested, is difficult and of limited value in early diagnosis and treatment.
Resumo:
Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.
Resumo:
Fibroblast growth factors (FGFs) regulate a plethora of biological functions, in both the embryonic and adult stages of development, binding their cognate receptors and thus activating a variety of downstream signalling pathways. Deregulation of the FGF/FGFR signalling axis, observed in multifarious tumor types including squamous non-small cell lung cancer, occurs through genomic FGFR alterations that drive ligand-independent receptor signalling or alterations that support ligand-dependent activation. Mutations are not restricted to the tyrosine kinase domain and aberrations appear to be tumor type dependent. As well as its complementarity and synergy with VEGF of particular interest is the interplay between FGFR and EGFR and the ability of these pathways to offer a compensatory signalling escape mechanism when either is inhibited. Hence there exists a rationale for a combinatorial approach to inhibition of these dysregulated pathways to reverse drug resistance. To date, several multi-target tyrosine kinase inhibitors as well as FGFR specific tyrosine kinase inhibitors (TKIs), monoclonal antibodies and FGF ligand traps have been developed. Promising preclinical data has resulted in several drugs entering clinical trials. This review explores aberrant FGFR and its potential as a therapeutic target in solid tumors.
Resumo:
The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.
Resumo:
ErbB3 binding protein Ebp1 has been shown to downregulate ErbB3 receptor-mediated signaling to inhibit cell proliferation. Rinderpest virus belongs to the family Paramyxoviridae and is characterized by the presence of a non-segmented negative-sense RNA genome. In this work, we show that rinderpest virus infection of Vero cells leads to the down-regulation of the host factor Ebp1, at both the mRNA and protein levels. Ebp1 protein has been shown to co-localize with viral inclusion bodies in infected cells, and it is packaged into virions, presumably through its interaction with the N protein or the N-RNA itself. Overexpression of Ebp1 inhibits viral transcription and multiplication in infected cells, suggesting that a mutual antagonism operates between host factor Ebp1 and the virus.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
SLC22A18, a poly-specific organic cation transporter, is paternally imprinted in humans and mice. It shows loss-of-heterozygosity in childhood and adult tumors, and gain-of-imprinting in hepatocarcinomas and breast cancers. Despite the importance of this gene, its transcriptional regulation has not been studied, and the promoter has not yet been characterized. We therefore set out to identify the potential cis-regulatory elements including the promoter of this gene. The luciferase reporter assay in human cells indicated that a region from -120 by to +78 by is required for the core promoter activity. No consensus TATA or CHAT boxes were found in this region, but two Sp1 binding sites were conserved in human, chimpanzee, mouse and rat. Mutational analysis of the two Sp1 sites suggested their requirement for the promoter activity. Chromatin-immunoprecipitation showed binding of Sp1 to the promoter region in vivo. Overexpression of Sp1 in Drosophila Sp1-null SL2 cells suggested that Sp1 is the transactivator of the promoter. The human core promoter was functional in mouse 3T3 and monkey COS7 cells. We found a CpG island which spanned the core promoter and exon 1. COBRA technique did not reveal promoter methylation in 10 normal oral tissues, 14 oral tumors, and two human cell lines HuH7 and A549. This study provides the first insight into the mechanism that controls expression of this imprinted tumor suppressor gene. A COBRA-based assay has been developed to look for promoter methylation in different cancers. The present data will help to understand the regulation of this gene and its role in tumorigenesis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Part I: Parkinson’s disease is a slowly progressive neurodegenerative disorder in which particularly the dopaminergic neurons of the substantia nigra pars compacta degenerate and die. Current conventional treatment is based on restraining symptoms but it has no effect on the progression of the disease. Gene therapy research has focused on the possibility of restoring the lost brain function by at least two means: substitution of critical enzymes needed for the synthesis of dopamine and slowing down the progression of the disease by supporting the functions of the remaining nigral dopaminergic neurons by neurotrophic factors. The striatal levels of enzymes such as tyrosine hydroxylase, dopadecarboxylase and GTP-CH1 are decreased as the disease progresses. By replacing one or all of the enzymes, dopamine levels in the striatum may be restored to normal and behavioral impairments caused by the disease may be ameliorated especially in the later stages of the disease. The neurotrophic factors glial cell derived neurotrophic factor (GDNF) and neurturin have shown to protect and restore functions of dopaminergic cell somas and terminals as well as improve behavior in animal lesion models. This therapy may be best suited at the early stages of the disease when there are more dopaminergic neurons for neurotrophic factors to reach. Viral vector-mediated gene transfer provides a tool to deliver proteins with complex structures into specific brain locations and provides long-term protein over-expression. Part II: The aim of our study was to investigate the effects of two orally dosed COMT inhibitors entacapone (10 and 30 mg/kg) and tolcapone (10 and 30 mg/kg) with a subsequent administration of a peripheral dopadecarboxylase inhibitor carbidopa (30 mg/kg) and L- dopa (30 mg/kg) on dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens of freely moving rats using dual-probe in vivo microdialysis. Earlier similarly designed studies have only been conducted in the dorsal striatum. We also confirmed the result of earlier ex vivo studies regarding the effects of intraperitoneally dosed tolcapone (30 mg/kg) and entacapone (30 mg/kg) on striatal and hepatic COMT activity. The results obtained from the dorsal striatum were generally in line with earlier studies, where tolcapone tended to increase dopamine and DOPAC levels and decrease HVA levels. Entacapone tended to keep striatal dopamine and HVA levels elevated longer than in controls and also tended to elevate the levels of DOPAC. Surprisingly in the nucleus accumbens, dopamine levels after either dose of entacapone or tolcapone were not elevated. Accumbal DOPAC levels, especially in the tolcapone 30 mg/kg group, were elevated nearly to the same extent as measured in the dorsal striatum. Entacapone 10 mg/kg elevated accumbal HVA levels more than the dose of 30 mg/kg and the effect was more pronounced in the nucleus accumbens than in the dorsal striatum. This suggests that entacapone 30 mg/kg has minor central effects. Also our ex vivo study results obtained from the dorsal striatum suggest that entacapone 30 mg/kg has minor and transient central effects, even though central HVA levels were not suppressed below those of the control group in either brain area in the microdialysis study. Both entacapone and tolcapone suppressed hepatic COMT activity more than striatal COMT activity. Tolcapone was more effective than entacapone in the dorsal striatum. The differences between dopamine and its metabolite levels in the dorsal striatum and nucleus accumbens may be due to different properties of the two brain areas.
Resumo:
Normal growth and development require the precise control of gene expression. Transcription factors are proteins that regulate gene expression by binding specific sequences of DNA. Abnormalities in transcription are implicated in a variety of human diseases, including cancer, endocrine disorders and birth defects. Transcription factor GATA4 has emerged as an important regulator of normal development and function in a variety of endoderm- and mesoderm- derived tissues, including gut, heart and several endocrine organs, such as gonads. Mice harboring a null mutation of Gata4 gene die during embryogenesis due to failure in heart formation, complicating the study of functional role of GATA4 in other organs. However, the expression pattern of GATA4 suggests it may play a role in the regulation of ovarian granulosa cell development, function and apoptosis. This premise is supported by in vitro studies showing that GATA4 regulates several steroidogenic enzymes as well as auto-, para- and endocrine signaling molecules important for granulosa cell function. This study assessed the in vivo role of GATA4 for granulosa cell function by utilizing two genetically modified mouse strains. The findings in the GATA4 deficient mice included delayed puberty, impaired fertility and signs of diminished estrogen production. At the molecular level, the GATA4 deficiency leads to attenuated expression of central steroidogenic genes, Steroidogenic acute regulatory protein (StAR), Side-chain cleavage (SCC), and aromatase as a response to stimulations with exogenous gonadotropins. Taken together, these suggest GATA4 is necessary for the normal ovarian function and female fertility. Programmed cell death, apoptosis, is a crucial part of normal ovarian development and function. In addition, disturbances in apoptosis have been implicated to pathogenesis of human granulosa cell tumors (GCTs). Apoptosis is controlled by extrinsic and intrinsic pathways. The intrinsic pathway is regulated by members of Bcl-2 family, and its founding member, the anti-apoptotic Bcl-2, is known to be important for granulosa cell survival. This study showed that the expression levels of GATA4 and Bcl-2 correlate in the human GCTs and that GATA4 regulates Bcl-2 expression, presumably by directly binding to its promoter. In addition, disturbing GATA4 function was sufficient to induce apoptosis in cultured GCT- derived cell line. Taken together, these results suggest GATA4 functions as an anti-apoptotic factor in GCTs. The extrinsic apoptotic pathway is controlled by the members of tumor necrosis factor (TNF) superfamily. An interesting ligand of this family is TNF-related apoptosis-inducing ligand (TRAIL), possessing a unique ability to selectively induce apoptosis in malignant cells. This study characterized the previously unknown expression of TRAIL and its receptors in both developing and adult human ovary, as well as in malignant granulosa cell tumors. TRAIL pathway was shown to be active in GCTs suggesting it may be a useful tool in treating these malignancies. However, more studies are required to assess the function of TRAIL pathway in normal ovaries. In addition to its ability to induce apoptosis in GCTs, this study revealed that GATA4 protects these malignancies from TRAIL-induced apoptosis. GATA4 presumably exerts this effect by regulating the expression of anti-apoptotic Bcl-2. This is of particular interest as high expression of GATA4 is known to correlate to aggressive GCT behavior. Thus, GATA4 seems to protect GCTs from endogenous TRAIL by upregulating anti-apoptotic factors such as Bcl-2.
Resumo:
Alternative pathway (AP) of complement can be activated on any surface, self or non-self. In atypical hemolytic uremic syndrome (aHUS) the AP regulation on self surfaces is insufficient and leads to complement attack against self-cells resulting usually in end-stage renal disease. Factor H (FH) is one of the key regulators of AP activation on the self surfaces. The domains 19 and 20 (FH19-20) are critical for the ability of FH to discriminate between C3b-opsonized self and non-self surfaces and are a hot-spot for mutations that have been described from aHUS patients. FH19-20 contains binding sites for both the C3d part of C3b and self surface polyanions that are needed for efficient C3b inactivation. To study the dysfunction of FH19-20, crystallographic structures of FH19-20 and FH19-20 in complex with C3d (FH19-20:C3d) were solved and aHUS-associated and structurally interesting point mutations were induced to FH19-20. Functional defects caused by these mutations were studied by analyzing binding of the FH19-20 mutant proteins to C3d, C3b, heparin, and mouse glomerular endothelial cells (mGEnCs). The results revealed two independent binding interfaces between FH19-20 and C3d - the FH19 site and the FH20 site. Superimposition of the FH19-20:C3d complex on the previously published C3b and FH1-4:C3b structures showed that the FH20 site on C3d is partially occluded, but the FH19 site is fully available. Furthermore, binding of FH19-20 via the FH19 site to C3b did not block binding of the functionally important FH1-4 domains and kept the FH20 site free to bind heparin or an additional C3d. Binding assays were used to show that FH20 domain can bind to heparin while FH19-20 is bound to C3b via the FH19 site, and that both the FH19 site and FH20 are necessary for recognition of non-activator surfaces. Simultaneous binding of FH19 site to C3b and FH20 to anionic self structures are the key interactions in self-surface recognition by FH and thereby enhanced avidity of FH explains how AP discriminates between self and non-self. The aHUS-associated mutations on FH19-20 were found to disrupt binding of the FH19 or FH20 site to C3d/C3b, or to disrupt binding of FH20 to heparin or mGEnC. Any of these dysfunctions leads to loss of FH avidity to C3b bearing self surfaces explaining the molecular pathogenesis of the aHUS-cases where mutations are found within FH19-20.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.