950 resultados para Nervous system--Degeneration--Treatment.
Resumo:
Amitriptyline is a tricyclic antidepressant, considered the treatment of choice for different types of chronic pain, including chronic myofascial pain. Its antinociceptive property is independent of its antidepressant effect. Although its analgesic mechanism is not precisely known, it is believed that the serotonin reuptake inhibition in the central nervous system plays a fundamental role in pain control. Although this medication is widely used in the prevention of chronic tension-type headache, few studies have investigated the efficacy of this treatment and the published results are contradictory. The objective of this article was to review the literature published on the use of amitriptyline in the prophylactic treatment of chronic tension-type headache, considering the level of scientific evidence of the different studies using the SORT criteria. From this review, 5 articles of evidence level 1, and another 5 articles of evidence level 2 were selected. Following analysis of the 10 studies, and in function of their scientific quality, a level A recommendation was made in favor of using amitriptyline in the treatment of chronic tension-type headache.
Resumo:
Schwann cell disturbance followed by segmental demyelination in the peripheral nervous system occurs in diabetic patients. Since Schwann cell and oligodendrocyte remyelination in the central nervous system is a well-known event in the ethidium bromide (EB) demyelinating model, the aim of this investigation was to determine the behavior of both cell types after local EB injection into the brainstem of streptozotocin diabetic rats. Adult male Wistar rats received a single intravenous injection of streptozotocin (50 mg/kg) and were submitted 10 days later to a single injection of 10 µL 0.1% (w/v) EB or 0.9% saline solution into the cisterna pontis. Ten microliters of 0.1% EB was also injected into non-diabetic rats. The animals were anesthetized and perfused through the heart 7 to 31 days after EB or saline injection and brainstem sections were collected and processed for light and transmission electron microscopy. The final balance of myelin repair in diabetic and non-diabetic rats at 31 days was compared using a semi-quantitative method. Diabetic rats presented delayed macrophage activity and lesser remyelination compared to non-diabetic rats. Although oligodendrocytes were the major remyelinating cells in the brainstem, Schwann cells invaded EB-induced lesions, first appearing at 11 days in non-diabetic rats and by 15 days in diabetic rats. Results indicate that short-term streptozotocin-induced diabetes hindered both oligodendrocyte and Schwann cell remyelination (mean remyelination scores of 2.57 ± 0.77 for oligodendrocytes and 0.67 ± 0.5 for Schwann cells) compared to non-diabetic rats (3.27 ± 0.85 and 1.38 ± 0.81, respectively).
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.
Resumo:
After a traumatic injury to the central nervous system, the distal stumps of axons undergo Wallerian degeneration (WD), an event that comprises cytoskeleton and myelin breakdown, astrocytic gliosis, and overexpression of proteins that inhibit axonal regrowth. By contrast, injured neuronal cell bodies show features characteristic of attempts to initiate the regenerative process of elongating their axons. The main molecular event that leads to WD is an increase in the intracellular calcium concentration, which activates calpains, calcium-dependent proteases that degrade cytoskeleton proteins. The aim of our study was to investigate whether preventing axonal degeneration would impact the survival of retinal ganglion cells (RGCs) after crushing the optic nerve. We observed that male Wistar rats (weighing 200-400 g; n=18) treated with an exogenous calpain inhibitor (20 mM) administered via direct application of the inhibitor embedded within the copolymer resin Evlax immediately following optic nerve crush showed a delay in the onset of WD. This delayed onset was characterized by a decrease in the number of degenerated fibers (P<0.05) and an increase in the number of preserved fibers (P<0.05) 4 days after injury. Additionally, most preserved fibers showed a normal G-ratio. These results indicated that calpain inhibition prevented the degeneration of optic nerve fibers, rescuing axons from the process of axonal degeneration. However, analysis of retinal ganglion cell survival demonstrated no difference between the calpain inhibitor- and vehicle-treated groups, suggesting that although the calpain inhibitor prevented axonal degeneration, it had no effect on RGC survival after optic nerve damage.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diethylpropion (DEP) is an amphetamine-like compound used as a coadjutant in the treatment of obesity and which presents toxicological importance as a drug of abuse. This drug causes important behavioral and cardiovascular complications; however, the vascular and behavioral alterations during DEP treatment and withdrawal, have not been determined. We evaluated the effects of DEP treatment and withdrawal on the rat aorta reactivity to noradrenaline, focusing on the endothelium, and the rat behavior during DEP treatment and withdrawal. DEP treatment caused a hyporreactivity to noradrenaline in aorta, reversible after 2 days of withdrawal and abolished by both the endothelium removal and the presence of L-NAME, but not by the presence of indomethacin. Furthermore, DEP treatment increased the general activity of rats. Contrarily, DEP withdrawal caused a decrease in the locomotor activity and an increase in grooming behavior, on the 2nd and 7th days after the interruption of the treatment, respectively. DEP treatment also caused an adaptive vascular response to noradrenaline that seems to be dependent on the increase in the endothelial nitric oxide system activity, but independent of prostaglandins synthesis. The data evidenced chronological differences in the adaptive responses of the vascular and central nervous systems induced by DEP treatment. Finally, a reversion of the adaptive response to DEP was observed in the vascular system during withdrawal, whereas a neuroadaptive process was still present in the central nervous system post-DEP. These findings advance on the understanding of the vascular and behavioral pathophysiological processes involved in the therapeutic and abusive uses of DEP. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Apert Syndrome, also called acrocephalosyndactylia type 1, is characterized by craniostenosis with early fusion of sutures of the vault and/ or cranial base, associated to mid-face hypoplasia, symmetric syndactylia of the hands and feet and other systemic malformations. CNS malformations and intracranial hypertension are frequently observed in these patients. Early surgical treatment aims to minimize the deleterious effects of intracranial hypertension. Fronto-orbital advancement, the usual surgical technique, increases the intracranial volume and improves the disposition of encephalic structures previously deformed by a short skull. This study analyzes CNS alterations revealed by magnetic resonance in 18 patients presenting Apert Syndrome, and the conformational alterations in the encephalic structures after surgical treatment. The patients' age in February 2001 ranged from 14 to 322 months (m=107). Image study included brain magnetic resonance showing ventricular enlargement in five cases (27.8%), corpus callosum hypoplasia in five cases (27.8%), septum pellucidum hypoplasia in five cases (27.8%), cavum vergae in two cases (11.1%) and, arachnoid cyst in the posterior fossa in two cases (11.1%). Absence of CNS alterations was noted in 44.4% of cases. A corpus callosum morphologic index was established by dividing its height by its length, which revealed values that ranged from 0.4409 to 1.0237. The values of this index were correlated to the occurrence or absence of surgical treatment (p=0.012; t=2.83). Data analysis allowed the conclusion that the corpus callosum morphologic measure quantified the conformational alterations of the cerebral structures determined by the surgical treatment.
Resumo:
Amino acids are well known to be an important class of compounds for the maintenance of body homeostasis and their deficit, even for the polar neuroactive aminoacids, can be controlled by supplementation. However, for the amino acid taurine (2-aminoethanesulfonic acid) this is not true. Due its special physicochemical properties, taurine is unable to cross the blood-brain barrier. In addition of injured taurine transport systems under pathological conditions, CNS supplementation of taurine is almost null. Taurine is a potent antioxidant and anti-inflammatory semi-essential amino acid extensively involved in neurological activities, acting as neurotrophic factor, binding to GABA A/glycine receptors and blocking the excitotoxicity glutamate-induced pathway leading to be a neuroprotective effect and neuromodulation. Taurine deficits have been implicated in several CNS diseases, such as Alzheimer's, Parkinson's, epilepsy and in the damage of retinal neurons. This review describes the CNS physiological functions of taurine and the development of new derivatives based on its structure useful in CNS disease treatment.&; 2012 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
The treatment of central nervous system (CNS) diseases is a major challenge. The presence of the barrier intended to protect the brain from unwanted molecules also impairs the efficacy of CNS-targeted drugs. The discovery of drug targets for CNS diseases opens a door for the selective treatment of these diseases. However, the physicochemical properties of drugs, including their hydrophilic properties and their peripheral metabolism, as well as the blood-brain barrier, can adversely affect the therapeutic potential of CNS-targeted drugs. Although peptides are often metabolized by enzymes, they are of particular interest for the treatment of CNS diseases or as carriers to deliver drugs to the brain. In this review, we discuss the use of peptides as potential prodrugs for the treatment of CNS diseases.
Resumo:
Introduction: Parkinson’s disease (PD) is a chronic disease of the nervous system, characterized by degeneration of neurons in the mesencephalic substantia nigra, leading to a clinical state of rest tremor, bradykinesia, muscular rigidity and postural instability. Physical therapy seeks to act by slowing the progression of the disease and when done in a group and maintain and / or improving the motor skills of the individual, can provide psychosocial benefi ts. Objective: examine the infl uence of the physical therapy group in balance, functional mobility and quality of life of individuals with PD. Method: participated in this study 04 subjects were female, mean age 67.75 (± 9.5) years, with medical diagnosis of PD, stages 1 to 3 of the Hoehn & Yahr. Before starting treatment, subjects underwent an assessment of the balance (BBS), functional mobility (TUG) and the quality of life (PDQ-39).The treatment was performed in groups, for a period of 10 weeks, lasting 60 minutes each session twice a week, totaling 20 sessions of physiotherapy. Upon completion of the treatment period the subjects were again assessed for balance, functional mobility and quality of life. The data were analyzed using the Student t-test, with signifi cance level of 5% (p ≤ 0.05). Results: statistical analysis showed signifi cant differences in three variables: equilibrium (p = 0.010), functional mobility (p = 0.029) and quality of life (p = 0.004), after physiotherapy intervention. Conclusion: physiotherapy treatment was group provides better balance, functional mobility and quality of life of patients with PD.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.