994 resultados para Negative Constant Curvature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current organic semiconductors for organic photovoltaics (OPV) have relative dielectric constants (relative permittivities, epsilon(r)) in the range of 2-4. As a consequence, Coulombically bound electron-hole pairs (excitons) are produced upon absorption of light, giving rise to limited power conversion efficiencies. We introduce a strategy to enhance epsilon(r) of well-known donors and acceptors without breaking conjugation, degrading charge carrier mobility or altering the transport gap. The ability of ethylene glycol (EG) repeating units to rapidly reorient their dipoles with the charge redistributions in the environment was proven via density functional theory (DFT) calculations. Fullerene derivatives functionalized with triethylene glycol side chains were studied for the enhancement of epsilon(r) together with poly(p-phenylene vinylene) and diketo-pyrrolopyrrole based polymers functionalized with similar side chains. The polymers showed a doubling of epsilon(r) with respect to their reference polymers in identical backbone. Fullerene derivatives presented enhancements up to 6 compared with phenyl-C-61-butyric acid methyl ester (PCBM) as the reference. Importantly, the applied modifications did not affect the mobility of electrons and holes and provided excellent solubility in common organic solvents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a system consisting of 5 dimensional gravity with a negative cosmological constant coupled to a massless scalar, the dilaton. We construct a black brane solution which arises when the dilaton satisfies linearly varying boundary conditions in the asymptotically AdS(5) region. The geometry of this black brane breaks rotational symmetry while preserving translational invariance and corresponds to an anisotropic phase of the system. Close to extremality, where the anisotropy is big compared to the temperature, some components of the viscosity tensor become parametrically small compared to the entropy density. We study the quasi normal modes in considerable detail and find no instability close to extremality. We also obtain the equations for fluid mechanics for an anisotropic driven system in general, working upto first order in the derivative expansion for the stress tensor, and identify additional transport coefficients which appear in the constitutive relation. For the fluid of interest we find that the parametrically small viscosity can result in a very small force of friction, when the fluid is enclosed between appropriately oriented parallel plates moving with a relative velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the synthesis, crystal structure and lithium deinsertion-insertion electrochemistry of two new lithium-rich layered oxides, Li3MRuO5 (M = Mn, Fe), related to rock salt based Li2MnO3 and LiCoO2. The Li3MnRuO5 oxide adopts a structure related to Li2MnO3 (C2/m) where Li and (Li0.2Mn0.4Ru0.4) layers alternate along the c-axis, while the Li3FeRuO5 oxide adopts a near-perfect LiCoO2 (R (3) over barm) structure where Li and (Li0.2Fe0.4Ru0.4) layers are stacked alternately. Magnetic measurements indicate for Li3MnRuO5 the presence of Mn3+ and low spin configuration for Ru4+ where the itinerant electrons occupy a pi*-band. The onset of a net maximum in the chi vs. T plot at 9.5 K and the negative value of the Weiss constant (theta) of -31.4 K indicate the presence of antiferromagnetic superexchange interactions according to different pathways. Lithium electrochemistry shows a similar behaviour for both oxides and related to the typical behaviour of Li-rich layered oxides where participation of oxide ions in the electrochemical processes is usually found. A long first charge process with capacities of 240 mA h g(-1) (2.3 Li per f.u.) and 144 mA h g(-1) (1.38 Li per f.u.) is observed for Li3MnRuO5 and Li3FeRuO5, respectively. An initial sloping region (OCV to ca. 4.1 V) is followed by a long plateau (ca. 4.3 V). Further discharge-charge cycling points to partial reversibility (ca. 160 mA h g(-1) and 45 mA h g(-1) for Mn and Fe, respectively). Nevertheless, just after a few cycles, cell failure is observed. X-ray photoelectron spectroscopy (XPS) characterisation of both pristine and electrochemically oxidized Li3MRuO5 reveals that in the Li3MnRuO5 oxide, Mn3+ and Ru4+ are partially oxidized to Mn4+ and Ru5+ in the sloping region at low voltage, while in the long plateau, O2- is also oxidized. Oxygen release likely occurs which may be the cause for failure of cells upon cycling. Interestingly, some other Li-rich layered oxides have been reported to cycle acceptably even with the participation of the O2- ligand in the reversible redox processes. In the Li3FeRuO5 oxide, the oxidation process appears to affect only Ru (4+ to 5+ in the sloping region) and O2- (plateau) while Fe seems to retain its 3+ state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flame particles are surface points that always remain embedded on, by comoving with a given iso-scalar surface within a flame. Tracking flame particles allow us to study the fate of propagating surface locations uniquely identified throughout their evolution with time. In this work, using Direct Numerical Simulations we study the finite lifetime of such flame particles residing on iso-temperature surfaces of statistically planar H-2-air flames interacting with near-isotropic turbulence. We find that individual flame particles as well as their ensemble, experience progressively increasing tangential straining rate (K-t) and increasing negative curvature (kappa) near the end of their lifetime to finally get annihilated. By studying two different turbulent flow conditions, flame particle tracking shows that such tendency of local flame surfaces to be strained and cusped towards pinch-off from the main surface is a rather generic feature, independent of initial conditions, locations and ambient turbulence intensity levels. The evolution of the alignments between the flame surface normals and the principal components of the local straining rates are also tracked. We find that the surface normals initially aligned with the most extensive principal strain rate components, rotate near the end of flame particles' lifetime to enable preferential alignment between the surface tangent and the most extensive principal strain rate component. This could explain the persistently increasing tangential strain rate, sharp negative curvature formation and eventual detachment. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 50 a phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the vector space of algebraic curvature operators we study the reaction ODE which is associated to the evolution equation of the Riemann curvature operator along the Ricci flow. More precisely, we give a partial classification of the zeros of this ODE up to suitable normalization and analyze the stability of a special class of zeros of the same. In particular, we show that the ODE is unstable near the curvature operators of the Riemannian product spaces where is an Einstein (locally) symmetric space of compact type and not a spherical space form when .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwall carbon nanotubes (MWNTs) were anchored onto graphene oxide sheets (GOs) via diazonium and C-C coupling reactions and characterized by spectroscopic and electron microscopic techniques. The thus synthesized MWNT-GO hybrid was then melt mixed with 50/50 polyamide6-maleic anhydride-modified acrylonitrile-butadiene-styrene (PA6-mABS) blend to design materials with high dielectric constant (30) and low dielectric loss. The phase morphology was studied by SEM and it was observed that the MWNT-GO hybrid was selectively localized in the PA6 phase of the blend. The 30 scales with the concentration of MWNT-GO in the blends, which interestingly showed a very low dielectric loss (< 0.2) making them potential candidate for capacitors. In addition, the dynamic storage modulus scales with the fraction of MWNT-GO in the blends, demonstrating their reinforcing capability as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by similar to 23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (similar to 1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (similar to 8 %) and net primary productivity (similar to 3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A generalized explanation is provided for the existence of the red-and blue-shifting nature of X-Z bonds (Z = H, halogens, chalcogens, pnicogens, etc.) in X-Z center dot center dot center dot Y complexes based on computational studies on a selected set of weakly bonded complexes and analysis of existing literature data. The additional electrons and orbitals available on Z in comparison to H make for dramatic differences between the H-bond and the rest of the Z-bonds. The nature of the X-group and its influence on the X-Z bond length in the parent X-Z molecule largely controls the change in the X-Z bond length on X-Z center dot center dot center dot Y bond formation; the Y-group usually influences only the magnitude of the effects controlled by X. The major factors which control the X-Z bond length change are: (a) negative hyperconjugative donation of electron density from X-group to X-Z sigma* antibonding molecular orbital (ABMO) in the parent X-Z, (b) induced negative hyperconjugation from the lone pair of electrons on Z to the antibonding orbitals of the X-group, and (c) charge transfer (CT) from the Y-group to the X-Z sigma* orbital. The exchange repulsion from the Y-group that shifts partial electron density at the X-Z sigma* ABMO back to X leads to blue-shifting and the CT from the Y-group to the sigma* ABMO of X-Z leads to red-shifting. The balance between these two opposing forces decides red-, zero- or blue-shifting. A continuum of behaviour of X-Z bond length variation is inevitable in X-Z center dot center dot center dot Y complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note is a study of nonnegativity conditions on curvature preserved by the Ricci flow. We focus on a specific class of curvature conditions which we call non-coercive: These are the conditions for which nonnegative curvature and vanishing scalar curvature does not imply flatness. We show, in dimensions greater than 4, that if a Ricci flow invariant nonnegativity condition is satisfied by all Einstein curvature operators with nonnegative scalar curvature, then this condition is just the nonnegativity of scalar curvature. As a corollary, we obtain that a Ricci flow invariant curvature condition, which is stronger than a nonnegative scalar curvature, cannot be strictly satisfied by curvature operators (other than multiples of the identity) of compact Einstein symmetric spaces. We also investigate conditions which are satisfied by all conformally flat manifolds with nonnegative scalar curvature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saccharomyces cerevisiae Sub1 is involved in several cellular processes such as, transcription initiation, elongation, mRNA processing and DNA repair. It has also been reported to provide cellular resistance during conditions of oxidative DNA damage and osmotic stress. Here, we report a novel role of SUB1 during starvation stress-induced sporulation, which leads to meiosis and spore formation in diploid yeast cells. Deletion of SUB1 gene significantly increased sporulation efficiency as compared to the wild-type cells in S288c genetic background. Whereas, the sporulation functions of the sub1(Y66A) missense mutant were similar to Sub1. SUB1 transcript and protein levels are downregulated during sporulation, in highly synchronized and sporulation proficient wild-type SK1 cells. The changes in Sub1 levels during sporulation cascade correlate with the induction of middle sporulation gene expression. Deletion of SUB1 increased middle sporulation gene transcript levels with no effect on their induction kinetics. In wild-type cells, Sub1 associates with chromatin at these loci in a temporal pattern that correlates with their enhanced gene expression seen in sub1. cells. We show that SUB1 genetically interacts with HOS2, which led us to speculate that Sub1 might function with Set3 repressor complex during sporulation. Positive Cofactor 4, human homolog of Sub1, complemented the sub1. sporulation phenotype, suggesting conservation of function. Taken together, our results suggest that SUB1 acts as a negative regulator of sporulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clustering techniques which can handle incomplete data have become increasingly important due to varied applications in marketing research, medical diagnosis and survey data analysis. Existing techniques cope up with missing values either by using data modification/imputation or by partial distance computation, often unreliable depending on the number of features available. In this paper, we propose a novel approach for clustering data with missing values, which performs the task by Symmetric Non-Negative Matrix Factorization (SNMF) of a complete pair-wise similarity matrix, computed from the given incomplete data. To accomplish this, we define a novel similarity measure based on Average Overlap similarity metric which can effectively handle missing values without modification of data. Further, the similarity measure is more reliable than partial distances and inherently possesses the properties required to perform SNMF. The experimental evaluation on real world datasets demonstrates that the proposed approach is efficient, scalable and shows significantly better performance compared to the existing techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mutually miscible homopolymer (here polymethyl methacrylate; PMMA) was employed to tailor the interfacial properties of immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiation, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefer PC over SAN which though enhance the electrical conductivity of the blends, they don't improve the interfacial properties and results in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance the mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in the migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced, manifesting the improved dispersion of the MWNTs. The state of dispersion of the MWNTs and the phase morphology were assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in the X and K-u-band frequencies. The blends with PMMA wrapped MWNTs manifested a -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.