970 resultados para Navier-Stokes-Smoluchowski
Resumo:
Simulações Numéricas são executadas em um código numérico de alta precisão resolvendo as equações de Navier-Stokes e da continuidade para regimes de escoamento incompressíveis num contexto da turbulência bidimensional. Este código utiliza um esquema compacto de diferenças finitas de sexta ordem na aproximação das derivadas espaciais. As derivadas temporais são calculadas usando o esquema de Runge-Kuta de terceeira ordem com baixo armazenamento. Tal código numérico fornece uma representação melhorada para uma grande faixa de escalas de comprimento e de tempo. As técnicas dos contornos imersos acopladas ao método dos contornos virtuais permitem modelar escoamentos não-estacionários sobre geometrrias complexas, usando simplesmente uma malha Cartesiana uniforme. Por meio de procedimentos de aproximação/interpolação, as técnicas dos contornos imersos (aproximação Gaussiana, interpolação bilinear e redistribuição Gaussiana), permitem a representação do corpo sólido no interior do campo de escoamento, com a superfície não coincidindo com a malha computacional. O método dos contornos virtuais, proposto originalmente por Peskin, consiste, basicamente, na imposição na superfície e/ou no interior do corpo, de um termo de força temporal acrescentando às equações do momento. A aplicação deste campo de força local leva o fluido ao repouso na superfície do corpo, permitindo obter as condições de contorno de não-deslizamento e de não penetração de fluido na parede. A análise das oscilações induzidas no escoamento-contorno pelo processo de desprendimento de vórtices na esteira do cilindro circular e de geometria retangulares na incidência, para números de Reybolds variando de 40 a 400, confirma a eficiência computacional e a aplicabilidade das técncias implementadas.
Resumo:
O objetivo deste trabalho é estudar os efeitos eletromagnéticos e fluido-dinâmicos induzidos no aço, decorrentes do uso de um agitador eletromagnético. Para tal, foi proposta a construção de um modelo numérico que resolva, de forma acoplada, os problemas de eletromagnetismo e fluido-dinâmica. O modelo numérico do problema eletromagnético, em elementos finitos, foi construído utilizando-se o software Opera-3d/Elektra da Vector Fields. O mesmo foi validado com medidas experimentais de densidade de fluxo magnético feitas na usina. O escoamento decorrente da agitação eletromagnética foi resolvido fazendo-se o acoplamento das forças de Lorentz com as equações de Navier-Stokes. Essas últimas foram resolvidas pelo método de volumes finitos, usando-se o software CFX-4 da AEA Technology. O modelo eletromagnético mostrou que existe um torque máximo dependente da freqüência do campo magnético. Também foi observado que a força magnética aumenta em quatro vezes seu valor, quando a corrente é duplicada. O perfil de escoamento produzido no molde, sob agitação eletromagnética, indica, que as situações de lingotamento testadas, não propiciam o arraste da escória. A velocidade crítica de arraste, determinada via modelo físico, não foi atingida para nenhum caso testado. O modelo fluido-dinâmico e térmico apresentou um aumento do fluxo de calor cedido pelo fluido para a casca solidificada com o uso do agitador eletromagnético. Como conseqüência, observou-se uma queda na temperatura do banho. Também foi observado, que o uso do agitador propicia a remoção de inclusões das camadas mais externas do tarugo. Ao mesmo tempo, notou-se que o uso do agitador aumenta o índice de remoção de inclusões para as duas seções de molde analisadas.
Resumo:
Este trabalho desenvolve um método numérico para a solução de escoamentos bidimensionais em torno de geometrias automobilísticas utilizando o método de diferenças finitas. O código computacional resolve as equações de Navier-Stokes e de Euler para uma distribuição adequada dos pontos discretos na malha. O método de integração empregado baseia-se no esquema explícito de Runge-Kutta de 3 estágios para as equações da quantidade de movimento e no de sub-relaxações sucessivas para a pressão na base Gauss-Seidel. Utilizou-se a técnica dos contornos virtuais em coordenadas cartesianas para resolver o escoamento sobre uma geometria simplificada, com a superfície coincidente com a malha computacional, e uma geometria automobilística mais complexa (BMW). Para a certificação da técnica empregada, optou-se pela utilização da teoria do escoamento potencial e pela comparação com dados experimentais encontrados na literatura e outros coletados em túnel de vento em escala reduzida. Houve dificuldade nesta comparação devido à falta de artigos relativos às simulações numéricas de escoamentos sobre automóveis e na aplicação da técnica dos contornos virtuais em geometrias complexas. Os resultados foram satisfatórios, com boas perspectivas para trabalhos futuros, contribuindo assim para o desenvolvimento da área.
Resumo:
Neste trabalho, discutimos o movimento de uma macromolécula carregada em um fluido ionizado. A interação do campo elétrico é descrita pela equação de Poisson-Boltzmann acoplada às equações governantes para a dinâmica do fluido e às equações dinâmicas da partícula. Uma formulação fraca é introduzida no caso em que o domínio ocupado pelo fluido é finito e um teorema de existência de soluções fracas, local em tempo, é estabelecido. Dois modelos são considerados: fluxos não-estacionários e estacionários. No primeiro caso, a hidrodinâmica do sistema é governada pelas equações de Navier-Stokes, considerando-se um termo forçante relacionado ao potencial elétrico; no segundo caso, uma velocidade de deslizamento, a qual depende não linearmente sobre os potenciais, é introduzida como uma condição de contorno para um problema estacionário de Stokes. O caso de um fluido ocupando uma região infinita é também discutido supondo-se uma hipótese de aproximação sobre o campo elétrico.
Resumo:
Desde a antigüidade a medição do escoamento dos fluidos tem sido uma marca de nossa civilização, ajudando a predizer a fertilidade das terras e o consumo d’água em fontes e aquedutos. Nos nossos dias, a área de medição de fluxo está bem estabelecida e ainda desperta grande interesse nas linhas de pesquisa da mecânica dos fluidos experimental e computacional. Em particular, o estudo da medição de fluxo com elementos intrusivos, tais como placas de orifício, é de grande interesse dado o preço baixo do medidor, e sua boa precisão quando comparada à sua simplicidade de instalação e manutenção. Esta dissertação tem como objetivo o estudo da aplicação de elementos finitos aos escoamentos de fluidos viscosos - via aproximação clássica de Galerkin e Galerkin/mínimos-quadrados (GLS) – com particular ênfase na aproximação das equações de Navier-Stokes incompressível no escoamento newtoniano através de um canal obstruído por uma placa de orifício. Inicialmente, são apresentadas as dificuldades do método de Galerkin clássico na aproximação de escoamentos incompressíveis; ou seja, através da simulação de escoamentos viscosos bem conhecidos - como o escoamento no interior de uma cavidade e através de uma expansão súbita - fica evidenciada a restrição imposta pela condição de Babuška-Brezzi quando da escolha dos subespaços aproximantes do campo de velocidade e pressão Como alternativa às patologias do método de Galerkin clássico, esta dissertação emprega a metodologia de Galerkin/mínimos-quadrados na simulação acima mencionada da placa de orifício, a qual permite o uso de elementos de igual-ordem para aproximar velocidade e pressão e capturar de maneira estável escoamentos sujeitos a altos números de Reynolds. Os testes computacionais realizados se apresentaram fisicamente realistas quando comparados com a literatura e dados experimentais, sendo todos desenvolvidos no Laboratório de Mecânica dos Fluidos Aplicada e Computacional (LAMAC) do Departamento de Engenharia Mecânica da Universidade Federal do Rio Grande do Sul.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper is concerned with the numerical solutions of time dependent two-dimensional incompressible flows. By using the primitive variables of velocity and pressure, the Navier-Stokes and mass conservation equations are solved by a semi-implicit finite difference projection method. A new bounded higher order upwind convection scheme is employed to deal with the non-linear (advective) terms. The procedure is an adaptation of the GENSMAC (J. Comput. Phys. 1994; 110: 171-186) methodology for calculating confined and free surface fluid flows at both low and high Reynolds numbers. The calculations were performed by using the 2D version of the Freeflow simulation system (J. Comp. Visual. Science 2000; 2:199-210). In order to demonstrate the capabilities of the numerical method, various test cases are presented. These are the fully developed flow in a channel, the flow over a backward facing step, the die-swell problem, the broken dam flow, and an impinging jet onto a flat plate. The numerical results compare favourably with the experimental data and the analytical solutions. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. and third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We generalize a procedure proposed by Mancera and Hunt [P.F.A. Mancera, R. Hunt, Some experiments with high order compact methods using a computer algebra software-Part 1, Appl. Math. Comput., in press, doi: 10.1016/j.amc.2005.05.015] for obtaining a compact fourth-order method to the steady 2D Navier-Stokes equations in the streamfunction formulation-vorticity using the computer algebra system Maple, which includes conformal mappings and non-uniform grids. To analyse the procedure we have solved a constricted stepped channel problem, where a fine grid is placed near the re-entrant corner by transformation of the independent variables. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)