974 resultados para Nanoscale electronic properties
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Study of the oxygen vacancy influence on magnetic properties of Fe- and Co-doped SnO2 diluted alloys
Resumo:
Transition-metal (TM)-doped diluted magnetic oxides (DMOs) have attracted attention from both experimental and theoretical points of view due to their potential use in spintronics towards new nanostructured devices and new technologies. In the present work, we study the magnetic properties of Sn0.96TM0.04O2 and Sn0.96TM0.04O1.98(V (O))(0.02), where TM = Fe and Co, focusing in particular in the role played by the presence of O vacancies nearby the TM. The calculated total energy as a function of the total magnetic moment per cell shows a magnetic metastability, corresponding to a ground state, respectively, with 2 and 1 mu(B)/cell, for Fe and Co. Two metastable states, with 0 and 4 mu(B)/cell were found for Fe, and a single value, 3 mu(B)/cell, for Co. The spin-crossover energies (E (S)) were calculated. The values are E (S) (0/2) = 107 meV and E (S) (4/2) = 25 meV for Fe. For Co, E (S) (3/1) = 36 meV. By creating O vacancies close to the TM site, we show that the metastablity and E (S) change. For iron, a new state appears, and the state with zero magnetic moment disappears. The ground state is 4 mu(B)/cell instead of 2 mu(B)/cell, and the energy E (S) (2/4) is 30 meV. For cobalt, the ground state is then found with 3 mu(B)/cell and the metastable state with 1 mu(B)/cell. The spin-crossover energy E (S) (1/3) is 21 meV. Our results suggest that these materials may be used in devices for spintronic applications that require different magnetization states.
Resumo:
The knowledge of electronic and local structures is a fundamental step towards understanding the properties of ferroelectric ceramics. X-ray absorption near-edge structure (XANES) of Pb1-xLaxZr0.40Ti0.60O3 ferroelectric samples was measured in order to know how the local order and electronic structure are related to their ferroelectric property, which was tailored by the substitution of lead by lanthanum atoms. The analysis of XANES spectra collected at Ti K- and L-edges XANES showed that the substitution of Pb by La leads to a decrement of local distortion around Ti atoms on the TiO6 octahedron. The analysis of O K-edge XANES spectra showed that the hybridization between O 2p and Pb 6sp states is related to the displacement of Ti atoms in the TiO6 octahedra. Based on these results, it is possible to determine that the degree of ferroelectricity in these samples and the manifestation of relaxor behavior are directly related to the weakening of O 2p and Pb 6sp hybridization. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4720472]
Resumo:
Graphene has received great attention due to its exceptional properties, which include corners with zero effective mass, extremely large mobilities, this could render it the new template for the next generation of electronic devices. Furthermore it has weak spin orbit interaction because of the low atomic number of carbon atom in turn results in long spin coherence lengths. Therefore, graphene is also a promising material for future applications in spintronic devices - the use of electronic spin degrees of freedom instead of the electron charge. Graphene can be engineered to form a number of different structures. In particular, by appropriately cutting it one can obtain 1-D system -with only a few nanometers in width - known as graphene nanoribbon, which strongly owe their properties to the width of the ribbons and to the atomic structure along the edges. Those GNR-based systems have been shown to have great potential applications specially as connectors for integrated circuits. Impurities and defects might play an important role to the coherence of these systems. In particular, the presence of transition metal atoms can lead to significant spin-flip processes of conduction electrons. Understanding this effect is of utmost importance for spintronics applied design. In this work, we focus on electronic transport properties of armchair graphene nanoribbons with adsorbed transition metal atoms as impurities and taking into account the spin-orbit effect. Our calculations were performed using a combination of density functional theory and non-equilibrium Greens functions. Also, employing a recursive method we consider a large number of impurities randomly distributed along the nanoribbon in order to infer, for different concentrations of defects, the spin-coherence length.
Resumo:
A theoretical approach is used here to explain experimental results obtained from the electrosynthesis of polypyrrole-2-carboxylic acid (PPY-2-COOH) films in nonaqueous medium. An analysis of the Fukui function (reactivity index) indicates that the monomer (pyrrole-2-carboxylic acid, PY-2-COOH), and dimers and trimers are oxidized in the C4 or C5 positions of the heterocyclic ring of the PY-2-COOH structure. After calculating the heat of formation using semiempirical Austin Model 1 post-Hartree-Fock parameterization for dimer species, both C4 and C5 positions adjacent to the aromatic rings of PPY-2-COOH were considered the most susceptible ones to oxidative coupling reactions. The ZINDO-S/CI semiempirical method was used to simulate the electronic transitions typically seen in the UV-VIS-NIR range in monomer and oligomers with different conjugation lengths. The use of an electrochemical quartz crystal microbalance provides sufficient information to propose a polymerization mechanism of PY-2-COOH based on molecular modeling and experimental results.
Resumo:
documentstyle[12pt,german]{article} pagestyle{empty} topmargin-1.5cm textheight24.5cm footskip-1.5cm % % begin{document} % begin{center} {Large {it Hern'{a}n Rodr'{i}guez}}\ vspace{24pt} {Large {bf Elektronische Transporteigenschaften von YBa$_{2}$Cu$_{3}$O$_{7-x}$/PrBa$_{2}$Cu$_{2.9}$Ga$_{0.1}$O$_{7-y}$ Dreifachschichten und "Ubergittern senkrecht zur Lagenstruktur}} end{center} vspace{24pt} noindent In der vorliegenden Arbeit wurden die Transporteigenschaften senkrecht zu den CuO$_{2}$--Ebenen von Hochtemperatur Supraleitern an YBa$_{2}$Cu$_{3}$O$_{7-x}$/\ PrBa$_{2}$Cu$_{2.9}$Ga$_{0.1}$O$_{7-y}$/ YBa$_{2}$Cu$_{3}$O$_{7-x}$ Dreifachschichten und [(YBa$_{2}$Cu$_{3}$O$_{7-x}$)$_{n}$\/(PrBa$_{2}$Cu$_{2.9}$Ga$_{0.1}$O$_{7-y}$)$_{m}$]$_{times M}$ "Ubergittern untersucht. Um die Transporteigenschaften senkrecht zu den Grenzfl"achen in Mehrlagenstrukturen messen zu k"onnen, ist ein Verfahren zur Herstellung von planaren Bauelemente verwendet worden. Die Untersuchungen an YBa$_{2}$Cu$_{3}$O$_{7-x}$/PrBa$_{2}$Cu$_{2.9}$Ga$_{0.1}$O$_{7-y}$ Dreifachschichten und "Ubergittern zeigen, da"s die Substrattemperatur w"ahrend des Wachstums die elektronischen Eigenschaften entlang der $c$--Achse stark beeinflusst. Bei Senkung der Abscheidetemperatur ergibt sich eine "Anderung von normalmetallischem zu tunnelkontaktartigem Verhalten. Die bei 840$^circ$C hergestellten Vielfachschichten weisen sowohl eine konstante Hintergrundleitf"ahigkeit als auch eine "Uberschu"sleitf"ahigkeit bei niedrigen Spannungen auf. Dies deutet darauf hin, da"s es sich um einen Supraleiter--Normalleiter--Supraleiter (S--N--S) Kontakt handelt. Dagegen zeigen Vielfachschichten, die bei 760$^circ$C deponiert wurden, deutlich unterschiedliches Verhalten verglichen mit den bei 840$^circ$C pr"aparierte Proben. Die Leitf"ahigkeit nimmt mit der Spannung zu, wobei der Leitf"ahigkeithintergrund eine ``V''--Form darstellt. Dar"uber hinaus zeigen die Leitf"ahigkeitskennlinien bei niedrigen Spannungen eine starke Abh"angigkeit sowohl von der Bias Spannung als auch von der Temperatur. Bei Dreifachschichten mit 20 nm PrBa$_{2}$Cu$_{2.9}$Ga$_{0.1}$O$_{7-y}$ tritt ein Leitf"ahigkeitmaximun bei Null--Spannung auf. Die Wechselwirkung zwischen tunnelnden Quasiteilchen und magnetischen Momenten in der Barriere ruft dieses Maximun hervor. Das "Ubergitter mit ($n/m$) = (4/5) Modulation zeigt Supraleiter--Isolator--Supraleiter (S--I--S) Tunnelkontakt--Verhalten mit Strukturen, die von der Energiel"ucke des Supraleiters hervorgerufen werden. Das S--N-- bzw., S--I--Kontaktverhalten der Heterostrukturen wurden ebenfalls mit Messungen der Leitf"ahigkeit bei tiefern Temperaturen weit au"serhalb der supraleitenden Energiel"ucke best"atigt. Diese Ergebnisse weisen auf die M"oglichkeit hin, durch Einstellen der Substrattemperaturen bei der Deposition das Auftreten von S--N--S und S--I--S Verhalten der Kontakte zu steuern. vspace{24pt} noindent Datum: 05.07.2004\ Betreuer: Prof. Dr. Hermann Adrian %Name des Betreuers, daneben dessen Unterschrift end{document}
Resumo:
III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.
Resumo:
Significant interest in nanotechnology, is stimulated by the fact that materials exhibit qualitative changes of properties when their dimensions approach ”finite-sizes”. Quantization of electronic, optical and acoustic energies at the nanoscale provides novel functions, with interests spanning from electronics and photonics to biology. The present dissertation involves the application of Brillouin light scattering (BLS) to quantify and utilize material displacementsrnfor probing phononics and elastic properties of structured systems with dimensions comparable to the wavelength of visible light. The interplay of wave propagation with materials exhibiting spatial inhomogeneities at sub-micron length scales provides information not only about elastic properties but also about structural organization at those length scales. In addition the vector nature of q allows, for addressing the directional dependence of thermomechanical properties. To meet this goal, one-dimensional confined nanostructures and a biological system possessing high hierarchical organization were investigated. These applications extend the capabilities of BLS from a characterization tool for thin films to a method for unravelingrnintriguing phononic properties in more complex systems.
Resumo:
This thesis focuses on synthesis as well as investigations of the electronic structure and properties of Heusler compounds for spintronic and thermoelectric applications.rnThe first part reports on the electronic and crystal structure as well as the mechanical, magnetic, and transport properties of the polycrystalline Heusler compound Co2MnGe. The crystalline structure was examined in detail by extended X-ray absorption fine structure spectroscopy and anomalous X-ray diffraction. The low-temperature magnetic moment agrees well with the Slater-Pauling rule and indicates a half-metallic ferromagnetic state of the compound, as is predicted by ab-initio calculations. Transport measurements and hard X-ray photoelectron spectroscopy (HAXPES) were performed to explain the electronic structure of the compound.rnA major part of the thesis deals with a systematical investigation of Heusler compounds for thermoelectric applications. Few studies have been reported on thermoelectric properties of p-type Heusler compounds. Therefore, this thesis focuses on the search for new p-type Heusler compounds with high thermoelectric efficiency. The substitutional series NiTi1−xMxSn and CoTi1−xMxSb (where M = Sc, V and 0 ≤ x ≤ 0.2) were synthesized and investigated theoretically and experimentally with respect to electronic structure and transport properties. The results show the possibility to create n-type and p-type thermoelectrics within one Heusler compound. The pure compounds showed n-type behavior, while under Sc substitution the system switched to p-type behavior. A maximum Seebeck coefficient of +230 μV/K (at 350 K) was obtained for NiTi0.26Sc0.04Zr0.35Hf0.35Sn, which is one of the highest values for p-type thermoelectric compounds based on Heusler alloys up to now. HAXPES valence band measurement show massive in gap states for the parent compounds NiTiSn, CoTiSb and NiTi0.3Zr0.35Hf0.35Sn. This proves that the electronic states close to the Fermi energy play a key role for the behavior of the transport properties. Furthermore, the electronic structure of the gapless Heusler compounds PtYSb, PtLaBi and PtLuSb were investigated by bulk sensitive HAXPES. The linear behavior of the spectra close to εF proves the bulk origin of Dirac-cone type density of states. Furthermore, a systematic study on the optical and transport properties of PtYSb is presented. The compound exhibits promising thermoelectric properties with a high figure of merit (ZT = 0.2) and a Hall mobility μh of 300 cm2/Vs at 350 K.rnThe last part of this thesis describes the linear dichroism in angular-resolved photoemission from the valence band of NiTi0.9Sc0.1Sn and NiMnSb. High resolution photoelectron spectroscopy was performed with an excitation energy of hν = 7.938 keV. The linear polarization of the photons was changed using an in-vacuum diamond phase retarder. Noticeable linear dichroism is found in the valence bands and this allows for a symmetry analysis of the contributing states. The differences in the spectra are found to be caused by symmetry dependent angular asymmetry parameters, and these occur even in polycrystalline samples without preferential crystallographic orientation.rnIn summary, Heusler compounds with 1:1:1 and 2:1:1 stoichiometry were synthesized and examined by chemical and physical methods. Overall, this thesis shows that the combination of first-principle calculations, transport measurements and high resolution high energy photoelectron spectroscopy analysis is a very powerful tool for the design and development of new materials for a wide range of applications from spintronic applications to thermoelectric applications.rn