926 resultados para NONLINEAR INTERNAL WAVES
Resumo:
To date, although much attention has been paid to the estimation and modeling of the voice source (ie, the glottal airflow volume velocity), the measurement and characterization of the supraglottal pressure wave have been much less studied. Some previous results have unveiled that the supraglottal pressure wave has some spectral resonances similar to those of the voice pressure wave. This makes the supraglottal wave partially intelligible. Although the explanation for such effect seems to be clearly related to the reflected pressure wave traveling upstream along the vocal tract, the influence that nonlinear source-filter interaction has on it is not as clear. This article provides an insight into this issue by comparing the acoustic analyses of measured and simulated supraglottal and voice waves. Simulations have been performed using a high-dimensional discrete vocal fold model. Results of such comparative analysis indicate that spectral resonances in the supraglottal wave are mainly caused by the regressive pressure wave that travels upstream along the vocal tract and not by source-tract interaction. On the contrary and according to simulation results, source-tract interaction has a role in the loss of intelligibility that happens in the supraglottal wave with respect to the voice wave. This loss of intelligibility mainly corresponds to spectral differences for frequencies above 1500 Hz.
Resumo:
El objetivo de esta tesis es el estudio de la respuesta estructural de los gasoductos sometidas a solicitaciones estáticas y dinámicas, enfocando prioritariamente en la respuesta sísmica. Los gasoductos, como las tuberías en general, se utilizan principalmente para la transportación de fluidos, como agua, gas o petróleo, de ahí la importancia de que el diseño y la estructura se realicen adecuadamente. La tubería debe ser capaz de soportar tanto los efectos de cargas estáticas como las debidas al peso propio o de la presión de la tierra, así como los diferentes tipos de cargas dinámicas ocurridas durante un evento sísmico, como los debidos a las ondas o el desplazamiento de fallas. En la primera parte de la tesis se describen aspectos generales de la tubería y su uso, y se da una breve historia de uso en la industria y las redes de abastecimiento urbano. Aparte de otros aspectos, se discuten las ventajas y desventajas de los diferentes materiales de las tuberías. En la segunda parte de la tesis se desarrollan las ecuaciones de equilibrio de una sección transversal de la tubería bajo cargas estáticas, tales como la presión interna, peso propio, presión de la tierra y las cargas externas. Un número de diferentes combinaciones de carga es analizado por medio de programas codificados como Matlab, los cuales se han desarrollado específicamente para este propósito. Los resultados se comparan con los obtenidos en Ansys utilizando un código de elementos finitos. En la tercera parte se presenta la respuesta dinámica de las tuberías, que abarca los efectos de las ondas y los desplazamientos de fallas. Se presentan las características relevantes del suelo como las velocidades de ondas, así como los métodos para estimar el desplazamiento máximo de las fallas. Un estudio paramétrico se emplea para ilustrar la influencia de estos parámetros en la respuesta estructural de la tubería. Con este fin se han utilizado dos métodos, el Pseudoestático y el Simplificado. En la última parte de la tesis son desarrollados los modelos de elementos finitos que permiten simular adecuadamente el comportamiento no lineal del suelo y la tubería. Los resultados se comparan con los obtenidos por un método simplificado utilizado con frecuencia que fue propuesto por Kennedy en 1977. Estudios paramétricos se presentan con el fin de examinar la validez de las hipótesis del método de Kennedy. La tesis concluye con recomendaciones que indican en qué casos los resultados obtenidos por el método de Kennedy son conservadores y cuando es preferible utilizar modelos de elementos finitos para estimar la respuesta de las tuberías durante los terremotos. ABSTRACT The subject of this thesis is the study of the structural response of pipelines subjected to static and dynamic loads with special attention to seismic design loads. Pipelines, as pipes in general, are used primarily for the transportation of fluids like water, gas or oil, hence the importance of an adequate design and structural behaviour. The pipe must be able to withstand both the effects of static loads like those due to self-weight or earth pressure as well as the different types of dynamic loads during a seismic event like those due to wave passing or fault displacements. In the first part of the thesis general aspects of pipelines and their use are described and a brief history of their usage in industry and for urban supply networks is given. Apart from other aspects, the advantages and disadvantages of different pipe materials are discussed. In the second part of the thesis the equilibrium equations of a transverse section of the pipe under static loads such as internal pressure, self-weight, earth pressure and external loads are developed. A number of different load combinations is analysed by means of programs coded in Matlab that have been specifically developed for this purpose. The results are compared to those obtained with the commercial Finite Element code Ansys. In the third part the dynamic response of pipelines during earthquakes is presented, covering the effects of passing waves and fault displacements. Relevant soil characteristics like wave propagation velocities as well as methods to estimate the maximum fault displacements are presented. A parametric study is employed to illustrate the influences of these parameters on the structural response of the pipe. To this end two methods have been used, the Pseudostatic and the Simplified method. In the last part of the thesis Finite Element models are developed which allow to adequately simulate the nonlinear behaviour of the soil and the pipe. The results are compared to those obtained by a frequently used simplified method which was proposed by Kennedy in 1977. Parametric studies are presented in order to examine the validity of the hypotheses Kennedys’ method is based on. The thesis concludes with recommendations indicating in which cases the results obtained by Kennedy’s method are conservative and when it is preferable to use Finite Element models to estimate the response of pipelines during earthquakes.
Resumo:
We analyze a simple model of the heat transfer to and from a small satellite orbiting round a solar system planet. Our approach considers the satellite isothermal, with external heat input from the environment and from internal energy dissipation, and output to the environment as black-body radiation. The resulting nonlinear ordinary differential equation for the satellite’s temperature is analyzed by qualitative, perturbation and numerical methods, which prove that the temperature approaches a periodic pattern (attracting limit cycle). This approach can occur in two ways, according to the values of the parameters: (i) a slow decay towards the limit cycle over a time longer than the period, or (ii) a fast decay towards the limit cycle over a time shorter than the period. In the first case, an exactly soluble average equation is valid. We discuss the consequences of our model for the thermal stability of satellites.
Resumo:
Las transformaciones martensíticas (MT) se definen como un cambio en la estructura del cristal para formar una fase coherente o estructuras de dominio multivariante, a partir de la fase inicial con la misma composición, debido a pequeños intercambios o movimientos atómicos cooperativos. En el siglo pasado se han descubierto MT en diferentes materiales partiendo desde los aceros hasta las aleaciones con memoria de forma, materiales cerámicos y materiales inteligentes. Todos muestran propiedades destacables como alta resistencia mecánica, memoria de forma, efectos de superelasticidad o funcionalidades ferroicas como la piezoelectricidad, electro y magneto-estricción etc. Varios modelos/teorías se han desarrollado en sinergia con el desarrollo de la física del estado sólido para entender por qué las MT generan microstructuras muy variadas y ricas que muestran propiedades muy interesantes. Entre las teorías mejor aceptadas se encuentra la Teoría Fenomenológica de la Cristalografía Martensítica (PTMC, por sus siglas en inglés) que predice el plano de hábito y las relaciones de orientación entre la austenita y la martensita. La reinterpretación de la teoría PTMC en un entorno de mecánica del continuo (CM-PTMC) explica la formación de los dominios de estructuras multivariantes, mientras que la teoría de Landau con dinámica de inercia desentraña los mecanismos físicos de los precursores y otros comportamientos dinámicos. La dinámica de red cristalina desvela la reducción de la dureza acústica de las ondas de tensión de red que da lugar a transformaciones débiles de primer orden en el desplazamiento. A pesar de las diferencias entre las teorías estáticas y dinámicas dado su origen en diversas ramas de la física (por ejemplo mecánica continua o dinámica de la red cristalina), estas teorías deben estar inherentemente conectadas entre sí y mostrar ciertos elementos en común en una perspectiva unificada de la física. No obstante las conexiones físicas y diferencias entre las teorías/modelos no se han tratado hasta la fecha, aun siendo de importancia crítica para la mejora de modelos de MT y para el desarrollo integrado de modelos de transformaciones acopladas de desplazamiento-difusión. Por lo tanto, esta tesis comenzó con dos objetivos claros. El primero fue encontrar las conexiones físicas y las diferencias entre los modelos de MT mediante un análisis teórico detallado y simulaciones numéricas. El segundo objetivo fue expandir el modelo de Landau para ser capaz de estudiar MT en policristales, en el caso de transformaciones acopladas de desplazamiento-difusión, y en presencia de dislocaciones. Comenzando con un resumen de los antecedente, en este trabajo se presentan las bases físicas de los modelos actuales de MT. Su capacidad para predecir MT se clarifica mediante el ansis teórico y las simulaciones de la evolución microstructural de MT de cúbicoatetragonal y cúbicoatrigonal en 3D. Este análisis revela que el modelo de Landau con representación irreducible de la deformación transformada es equivalente a la teoría CM-PTMC y al modelo de microelasticidad para predecir los rasgos estáticos durante la MT, pero proporciona una mejor interpretación de los comportamientos dinámicos. Sin embargo, las aplicaciones del modelo de Landau en materiales estructurales están limitadas por su complejidad. Por tanto, el primer resultado de esta tesis es el desarrollo del modelo de Landau nolineal con representación irreducible de deformaciones y de la dinámica de inercia para policristales. La simulación demuestra que el modelo propuesto es consistente fcamente con el CM-PTMC en la descripción estática, y también permite una predicción del diagrama de fases con la clásica forma ’en C’ de los modos de nucleación martensítica activados por la combinación de temperaturas de enfriamiento y las condiciones de tensión aplicada correlacionadas con la transformación de energía de Landau. Posteriomente, el modelo de Landau de MT es integrado con un modelo de transformación de difusión cuantitativa para elucidar la relajación atómica y la difusión de corto alcance de los elementos durante la MT en acero. El modelo de transformaciones de desplazamiento y difusión incluye los efectos de la relajación en borde de grano para la nucleación heterogenea y la evolución espacio-temporal de potenciales de difusión y movilidades químicas mediante el acoplamiento de herramientas de cálculo y bases de datos termo-cinéticos de tipo CALPHAD. El modelo se aplica para estudiar la evolución microstructural de aceros al carbono policristalinos procesados por enfriamiento y partición (Q&P) en 2D. La microstructura y la composición obtenida mediante la simulación se comparan con los datos experimentales disponibles. Los resultados muestran el importante papel jugado por las diferencias en movilidad de difusión entre la fase austenita y martensita en la distibución de carbono en las aceros. Finalmente, un modelo multi-campo es propuesto mediante la incorporación del modelo de dislocación en grano-grueso al modelo desarrollado de Landau para incluir las diferencias morfológicas entre aceros y aleaciones con memoria de forma con la misma ruptura de simetría. La nucleación de dislocaciones, la formación de la martensita ’butterfly’, y la redistribución del carbono después del revenido son bien representadas en las simulaciones 2D del estudio de la evolución de la microstructura en aceros representativos. Con dicha simulación demostramos que incluyendo las dislocaciones obtenemos para dichos aceros, una buena comparación frente a los datos experimentales de la morfología de los bordes de macla, la existencia de austenita retenida dentro de la martensita, etc. Por tanto, basado en un modelo integral y en el desarrollo de códigos durante esta tesis, se ha creado una herramienta de modelización multiescala y multi-campo. Dicha herramienta acopla la termodinámica y la mecánica del continuo en la macroescala con la cinética de difusión y los modelos de campo de fase/Landau en la mesoescala, y también incluye los principios de la cristalografía y de la dinámica de red cristalina en la microescala. ABSTRACT Martensitic transformation (MT), in a narrow sense, is defined as the change of the crystal structure to form a coherent phase, or multi-variant domain structures out from a parent phase with the same composition, by small shuffles or co-operative movements of atoms. Over the past century, MTs have been discovered in different materials from steels to shape memory alloys, ceramics, and smart materials. They lead to remarkable properties such as high strength, shape memory/superelasticity effects or ferroic functionalities including piezoelectricity, electro- and magneto-striction, etc. Various theories/models have been developed, in synergy with development of solid state physics, to understand why MT can generate these rich microstructures and give rise to intriguing properties. Among the well-established theories, the Phenomenological Theory of Martensitic Crystallography (PTMC) is able to predict the habit plane and the orientation relationship between austenite and martensite. The re-interpretation of the PTMC theory within a continuum mechanics framework (CM-PTMC) explains the formation of the multivariant domain structures, while the Landau theory with inertial dynamics unravels the physical origins of precursors and other dynamic behaviors. The crystal lattice dynamics unveils the acoustic softening of the lattice strain waves leading to the weak first-order displacive transformation, etc. Though differing in statics or dynamics due to their origins in different branches of physics (e.g. continuum mechanics or crystal lattice dynamics), these theories should be inherently connected with each other and show certain elements in common within a unified perspective of physics. However, the physical connections and distinctions among the theories/models have not been addressed yet, although they are critical to further improving the models of MTs and to develop integrated models for more complex displacivediffusive coupled transformations. Therefore, this thesis started with two objectives. The first one was to reveal the physical connections and distinctions among the models of MT by means of detailed theoretical analyses and numerical simulations. The second objective was to expand the Landau model to be able to study MTs in polycrystals, in the case of displacive-diffusive coupled transformations, and in the presence of the dislocations. Starting with a comprehensive review, the physical kernels of the current models of MTs are presented. Their ability to predict MTs is clarified by means of theoretical analyses and simulations of the microstructure evolution of cubic-to-tetragonal and cubic-to-trigonal MTs in 3D. This analysis reveals that the Landau model with irreducible representation of the transformed strain is equivalent to the CM-PTMC theory and microelasticity model to predict the static features during MTs but provides better interpretation of the dynamic behaviors. However, the applications of the Landau model in structural materials are limited due its the complexity. Thus, the first result of this thesis is the development of a nonlinear Landau model with irreducible representation of strains and the inertial dynamics for polycrystals. The simulation demonstrates that the updated model is physically consistent with the CM-PTMC in statics, and also permits a prediction of a classical ’C shaped’ phase diagram of martensitic nucleation modes activated by the combination of quenching temperature and applied stress conditions interplaying with Landau transformation energy. Next, the Landau model of MT is further integrated with a quantitative diffusional transformation model to elucidate atomic relaxation and short range diffusion of elements during the MT in steel. The model for displacive-diffusive transformations includes the effects of grain boundary relaxation for heterogeneous nucleation and the spatio-temporal evolution of diffusion potentials and chemical mobility by means of coupling with a CALPHAD-type thermo-kinetic calculation engine and database. The model is applied to study for the microstructure evolution of polycrystalline carbon steels processed by the Quenching and Partitioning (Q&P) process in 2D. The simulated mixed microstructure and composition distribution are compared with available experimental data. The results show that the important role played by the differences in diffusion mobility between austenite and martensite to the partitioning in carbon steels. Finally, a multi-field model is proposed by incorporating the coarse-grained dislocation model to the developed Landau model to account for the morphological difference between steels and shape memory alloys with same symmetry breaking. The dislocation nucleation, the formation of the ’butterfly’ martensite, and the redistribution of carbon after tempering are well represented in the 2D simulations for the microstructure evolution of the representative steels. With the simulation, we demonstrate that the dislocations account for the experimental observation of rough twin boundaries, retained austenite within martensite, etc. in steels. Thus, based on the integrated model and the in-house codes developed in thesis, a preliminary multi-field, multiscale modeling tool is built up. The new tool couples thermodynamics and continuum mechanics at the macroscale with diffusion kinetics and phase field/Landau model at the mesoscale, and also includes the essentials of crystallography and crystal lattice dynamics at microscale.
Resumo:
The propagation of inhomogeneous, weakly nonlinear waves is considered in a cochlear model having two degrees of freedom that represent the transverse motions of the tectorial and basilar membranes within the organ of Corti. It is assumed that nonlinearity arises from the saturation of outer hair cell active force generation. I use multiple scale asymptotics and treat nonlinearity as a correction to a linear hydroelastic wave. The resulting theory is used to explain experimentally observed features of the response of the cochlear partition to a pure tone, including: the amplification of the response in a healthy cochlea vs a dead one; the less than linear growth rate of the response to increasing sound pressure level; and the amount of distortion to be expected at high and low frequencies at basal and apical locations, respectively. I also show that the outer hair cell nonlinearity generates retrograde waves.
Resumo:
When Ca2+ is released from internal stores in living cells, the resulting wave of increased concentration can travel without deformation (continuous propagation) or with burst-like behavior (saltatory propagation). We analyze the “fire–diffuse–fire” model in order to illuminate the differences between these two modes of propagation. We show that the Ca2+ release wave in immature Xenopus oocytes and cardiac myocytes is saltatory, whereas the fertilization wave in the mature oocyte is continuous.
Resumo:
"February 1988."
Resumo:
"Cornell Aeronautical Laboratory internal research."
Resumo:
In this paper, we investigate transmission of electromagnetic wave through aperiodic dielectric multilayers. A generic feature shown is that the mirror symmetry in the system can induce the resonant transmission, which originates from the positional correlations (for example, presence of dimers) in the system. Furthermore, the resonant transmission can be manipulated at a specific wavelength by tuning aperiodic structures with internal symmetry. The theoretical results are experimentally proved in the optical observation of aperiodic SiO2/TiO2 multilayers with internal symmetry. We expect that this feature may have potential applications in optoelectric devices such as the wavelength division multiplexing system.
Resumo:
We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phase-matching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands. (C) 2004 Optical Society of America.
Resumo:
Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.
Resumo:
A straightforward derivation of relativistic expressions for the mechanical momentum, kinetic and total energies, and mass-energy equivalence (including potential energy) which does not require any knowledge of the energy-momentum relation for electromagnetic waves or consideration of elastic collisions, but is directly based on Newton's second law and Lorentz's transformations, is presented in this paper. The existence of an invariant force is shown to be important for the validity of the relativistic mechanics.
Resumo:
Cilia and flagella are hairlike extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consists of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Resumo:
Feature detection is a crucial stage of visual processing. In previous feature-marking experiments we found that peaks in the 3rd derivative of the luminance profile can signify edges where there are no 1st derivative peaks nor 2nd derivative zero-crossings (Wallis and George 'Mach edges' (the edges of Mach bands) were nicely predicted by a new nonlinear model based on 3rd derivative filtering. As a critical test of the model, we now use a new class of stimuli, formed by adding a linear luminance ramp to the blurred triangle waves used previously. The ramp has no effect on the second or higher derivatives, but the nonlinear model predicts a shift from seeing two edges to seeing only one edge as the added ramp gradient increases. In experiment 1, subjects judged whether one or two edges were visible on each trial. In experiment 2, subjects used a cursor to mark perceived edges and bars. The position and polarity of the marked edges were close to model predictions. Both experiments produced the predicted shift from two to one Mach edge, but the shift was less complete than predicted. We conclude that the model is a useful predictor of edge perception, but needs some modification.
Resumo:
We investigate the use of nonlinear optical loop mirrors as saturable absorbers in picosecond soliton transmission systems. It is found that they allow short (1–5-ps) pulses to be propagated through chains of optical amplifiers spaced at intervals of typically 10 km. The loop mirror removes dispersive waves and stabilizes the peak amplitude of the soliton. An additional advantage is that the self-frequency shift of the soliton may be suppressed by bandwidth filtering without causing growth of dispersive waves at the center of the passband. The timing jitter and soliton interactions present in the scheme are also described.