751 resultados para NEURAL LOBE
Resumo:
L’état d’attention sans réflexion, aussi appelé « mindfulness », a démontré des effets positifs en clinique pour les désordres émotionnels associés à diverses conditions. Le nombre d’études portant sur la caractérisation des substrats neuronaux de cet état attentionnel croît, mais il importe d’investiguer davantage à ce chapitre pour éventuellement améliorer les interventions cliniques. La présente étude compte aider à déterminer, par la magnétoencéphalographie, quelles régions cérébrales sont en corrélation avec le mindfulness chez des experts, i.e. des méditants Zen. Ces derniers cultivent un état dans lequel ils s’abstiennent de rechercher ou de rejeter les phénomènes sensoriels, ce qui en fait d’excellents candidats à la présente étude. Dans un contexte de stimulations visuelles émotionnelles, il fut demandé aux méditants tantôt d’observer les images dans un état de mindfulness (condition expérimentale), tantôt dans un état dit normal (condition contrôle) où aucun effort particulier d’attention n’était requis. Les résultats d’analyse suggèrent que les participants expérimentèrent une intensité émotionnelle moins importante en mindfulness : les cotes subjectives ainsi qu’une réponse magnétique cérébrale reliée aux émotions nommée Potentiel Positif Tardif magnétique (PPTm) suggèrent cela. Cependant, le résultat le plus statistiquement probant dépasse la nature affective des stimuli. Il s’agit d’une diminution temporellement soutenue de l’activité de fréquence gamma au niveau des zones visuelles associatives du lobe temporal droit, sans égard à la nature des images. Également, une suppression de l’activité gamma d’une zone du cortex préfrontal latéral gauche fut observée. Ceci pourrait indiquer une diminution de la conceptualisation des stimuli reliée au langage et aux processus réflectifs du soi.
Resumo:
Les anomalies du tube neural (ATN) sont des malformations congénitales très fréquentes chez l’humain en touchant 1-2 nouveau-nés sur 1000 naissances. Elles résultent d’une fermeture incomplète du tube neural lors de l’embryogenèse. L’étiologie des ATN est complexe impliquant des facteurs environnementaux et des facteurs génétiques. La souris représente un outil puissant afin de mieux comprendre la génétique des ATN. Particulièrement, la souris modèle a impliqué fortement la voie de la polarité cellulaire planaire (PCP) dans ces malformations. Dans cette étude, nous avons identifié et caractérisé une nouvelle souris mutante, Skam26Jus dans le but d’identifier un nouveau gène causant les ATN. Skam26Jus a été générée par l’agent mutagène N-Ethyl-N-Nitrosuera. Cette souris est caractérisée par une queue en forme de boucle ou de crochet, soit un phénotype associé aux ATN. La complémentation génétique de la souris Skam26Jus avec une souris mutante d’un gène de la voie PCP Vangl2 (Looptail) a montré une interaction génétique entre le gène muté chez Skam26Jus et Vangl2, suggérant que ces deux gènes fonctionnent dans des voies de signalisation semblables ou parallèles. Un total de 50% des embryons doubles hétérozygotes avec un phénotype de la queue présentent un spina bifida. La cartographie par homozygotie du génome entier suivie par un clonage positionnel a permis d’identifier Lrp6 comme le gène muté chez Skam26Jus. Une mutation homozygote, p.Ile681Arg, a été identifiée dans Lrp6 chez les souris ayant une queue en boucle/crochet. Cette mutation était absente dans 30 souches génétiques pures indiquant que cette mutation est spécifique au phénotype observé. Une étude de phénotype-génotype évalue la pénétrance à 53 % de la mutation Ile681Arg. Lrp6 est connu pour activer la voie canonique Wnt/β-caténine et inhiber la voie non canonique Wnt/PCP. Le séquençage de la région codante et de la jonction exon-intron de LRP6 chez 268 patients a mené à l’identification de quatre nouvelles rares mutations faux sens absentes chez 272 contrôles et de toutes les bases de données publiques. Ces mutations sont p.Tyr306His ; p.Tyr373Cys ; p.Val1386Ile; p.Tyr1541Cys et leur pathogénicité prédite in silico indiquent que p.Val1386Ile est bénigne, et que p.Tyr306Hiset p.Tyr373Cys et p.Tyr1541Cys sont i possiblement dommageables. Les mutations p.Tyr306His, p.Tyr373Cys et p.Tyr1541Cys ont affecté l’habilité de LRP6 d’activer la voie Wnt/β-caténine en utilisant le système rapporteur luciférase de pTOPflash. Nos résultats suggèrent que LRP6 joue un rôle dans le développement des ATN chez une petite fraction de patients ayant une ATN. Cette étude présente aussi Skam26Jus comme un nouveau modèle pour étudier les ATN chez l’humain et fournit un outil important pour comprendre les mécanismes moléculaires à l’origine des A TN.
Resumo:
La mémoire n’est pas un processus unitaire et est souvent divisée en deux catégories majeures: la mémoire déclarative (pour les faits) et procédurale (pour les habitudes et habiletés motrices). Pour perdurer, une trace mnésique doit passer par la consolidation, un processus par lequel elle devient plus robuste et moins susceptible à l’interférence. Le sommeil est connu comme jouant un rôle clé pour permettre le processus de consolidation, particulièrement pour la mémoire déclarative. Depuis plusieurs années cependant, son rôle est aussi reconnu pour la mémoire procédurale. Il est par contre intéressant de noter que ce ne sont pas tous les types de mémoire procédurale qui requiert le sommeil afin d’être consolidée. Entre autres, le sommeil semble nécessaire pour consolider un apprentissage de séquences motrices (s’apparentant à l’apprentissage du piano), mais pas un apprentissage d’adaptation visuomotrice (tel qu’apprendre à rouler à bicyclette). Parallèlement, l’apprentissage à long terme de ces deux types d’habiletés semble également sous-tendu par des circuits neuronaux distincts; c’est-à-dire un réseau cortico-striatal et cortico-cérébelleux respectivement. Toutefois, l’implication de ces réseaux dans le processus de consolidation comme tel demeure incertain. Le but de cette thèse est donc de mieux comprendre le rôle du sommeil, en contrôlant pour le simple passage du temps, dans la consolidation de ces deux types d’apprentissage, à l’aide de l’imagerie par résonnance magnétique fonctionnelle et d’analyses de connectivité cérébrale. Nos résultats comportementaux supportent l’idée que seul l’apprentissage séquentiel requiert le sommeil pour déclencher le processus de consolidation. Nous suggérons de plus que le putamen est fortement associé à ce processus. En revanche, les performances d’un apprentissage visuomoteur s’améliorent indépendamment du sommeil et sont de plus corrélées à une plus grande activation du cervelet. Finalement, en explorant l’effet du sommeil sur la connectivité cérébrale, nos résultats démontrent qu’en fait, un système cortico-striatal semble être plus intégré suite à la consolidation. C’est-à-dire que l’interaction au sein des régions du système est plus forte lorsque la consolidation a eu lieu, après une nuit de sommeil. En opposition, le simple passage du temps semble nuire à l’intégration de ce réseau cortico-striatal. En somme, nous avons pu élargir les connaissances quant au rôle du sommeil pour la mémoire procédurale, notamment en démontrant que ce ne sont pas tous les types d’apprentissages qui requièrent le sommeil pour amorcer le processus de consolidation. D’ailleurs, nous avons également démontré que cette dissociation de l’effet du sommeil est également reflétée par l’implication de deux réseaux cérébraux distincts. À savoir, un réseau cortico-striatal et un réseau cortico-cérébelleux pour la consolidation respective de l’apprentissage de séquence et d’adaptation visuomotrice. Enfin, nous suggérons que la consolidation durant le sommeil permet de protéger et favoriser une meilleure cohésion au sein du réseau cortico-striatal associé à notre tâche; un phénomène qui, s’il est retrouvé avec d’autres types d’apprentissage, pourrait être considéré comme un nouveau marqueur de la consolidation.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
Les anomalies du tube neural (ATN) sont des malformations congénitales parmi les plus fréquentes chez l’humain en touchant 1-2 nouveau-nés par 1000 naissances. Elles résultent d’un défaut de fermeture du tube neural pendant l’embryogenèse. Les formes les plus courantes d'ATN chez l'homme sont l'anencéphalie et le spina-bifida. Leur étiologie est complexe impliquant à la fois des facteurs environnementaux et des facteurs génétiques. Un dérèglement dans la signalisation Wnt, incluant la signalisation canonique Wnt/β-caténine et non-canonique de la polarité planaire cellulaire (PCP), peut causer respectivement le cancer ou les anomalies du tube neural (ATN). Les deux voies semblent s’antagoniser mutuellement. Dans cette étude, nous investiguons les rôles de Lrp6 et deANKRD6, entant qu’interrupteurs moléculaires entre les deux voies de signalisation Wnt, et CELSR1, en tant que membre de la PCP, chez la souris mutante Skax26m1Jus, générée par l’agent mutagène N-Ethyl-N-Nitrosuera, et dans une cohorte de patients humains ATN. Pour Lrp6, nous avons démontré que Skax26m1Jus représente un allèle hypermorphe de Lrp6 avec une augmentation de l’activité de la signalisation Wnt/canonique et une diminution de l’activité JNK induite par la voie PCP. Nous avons également montré que Lrp6Skax26m1Jus interagit génétiquement avec un mutant PCP (Vangl2Lp) où les doubles hétérozygotes ont montré une fréquence élevée d’ATN et des défauts dans la polarité des cellules ciliées de la cochlée. Particulièrement, notre étude démontre l'association des nouvelles et rares mutations faux-sens dans LRP6 avec les ATN humaines. Nous montrons que trois mutations de LRP6 causent une activité canonique réduite et non-canonique élevée. Pour ANKRD6, nous avons identifié quatre nouvelles et rares mutations faux-sens chez 0,8% des patients ATN et deux chez 1,3% des contrôles. Notamment, seulement deux, des six mutations validées (p.Pro548Leu et p.Arg632His) ont démontré un effet significatif sur l’activité de ANKRD6 selon un mode hypomorphique. Pour CELSR1, nous avons identifié une mutation non-sens dans l'exon 1 qui supprime la majeure partie de la protéine et une délétionde 12 pb. Cette perte de nucléotides ne change pas le cadre de lecture et élimine un motif putatif de phosphorylation par la PKC " SSR ". Nous avons également détecté un total de 13 nouveaux et rares variants faux-sens qui avaient été prédits comme étant pathogènes in silico. Nos données confirment le rôle inhibiteur de Lrp6 dans la signalisation PCP pendant la neurulation et indiquent aussi que les mutations faux-sens identifiées chez LRP6 et ANKRD6 pourraient affecter un équilibre réciproque et un antagonisme très sensible à un dosage précis entre les deux voies Wnt. Ces variants peuvent aussi agir comme facteurs prédisposants aux ATN. En outre, nos résultats impliquent aussi CELSR1 comme un facteur de risque pour les anomalies du tube neural ou l’agénésie caudale. Nos résultats fournissent des preuves supplémentaires que la voie de signalisation PCP a un rôle pathogène dans ces malformations congénitales et un outil important pour mieux comprendre leurs mécanismes moléculaires.
Resumo:
Bien que le passage du temps altère le cerveau, la cognition ne suit pas nécessairement le même destin. En effet, il existe des mécanismes compensatoires qui permettent de préserver la cognition (réserve cognitive) malgré le vieillissement. Les personnes âgées peuvent utiliser de nouveaux circuits neuronaux (compensation neuronale) ou des circuits existants moins susceptibles aux effets du vieillissement (réserve neuronale) pour maintenir un haut niveau de performance cognitive. Toutefois, la façon dont ces mécanismes affectent l’activité corticale et striatale lors de tâches impliquant des changements de règles (set-shifting) et durant le traitement sémantique et phonologique n’a pas été extensivement explorée. Le but de cette thèse est d’explorer comment le vieillissement affecte les patrons d’activité cérébrale dans les processus exécutifs d’une part et dans l’utilisation de règles lexicales d’autre part. Pour cela nous avons utilisé l’imagerie par résonance magnétique fonctionnelle (IRMf) lors de la performance d’une tâche lexicale analogue à celle du Wisconsin. Cette tâche a été fortement liée à de l’activité fronto-stritale lors des changements de règles, ainsi qu’à la mobilisation de régions associées au traitement sémantique et phonologique lors de décisions sémantiques et phonologiques, respectivement. Par conséquent, nous avons comparé l’activité cérébrale de jeunes individus (18 à 35 ans) à celle d’individus âgés (55 à 75 ans) lors de l’exécution de cette tâche. Les deux groupes ont montré l’implication de boucles fronto-striatales associées à la planification et à l’exécution de changements de règle. Toutefois, alors que les jeunes semblaient activer une « boucle cognitive » (cortex préfrontal ventrolatéral, noyau caudé et thalamus) lorsqu’ils se voyaient indiquer qu’un changement de règle était requis, et une « boucle motrice » (cortex postérieur préfrontal et putamen) lorsqu’ils devaient effectuer le changement, les participants âgés montraient une activation des deux boucles lors de l’exécution des changements de règle seulement. Les jeunes adultes tendaient à présenter une augmentation de l’activité du cortex préfrontal ventrolatéral, du gyrus fusiforme, du lobe ventral temporale et du noyau caudé lors des décisions sémantiques, ainsi que de l’activité au niveau de l’aire de Broca postérieur, de la junction temporopariétale et du cortex moteur lors de décisions phonologiques. Les participants âgés ont montré de l’activité au niveau du cortex préfrontal latéral et moteur durant les deux types de décisions lexicales. De plus, lorsque les décisions sémantiques et phonologiques ont été comparées entre elles, les jeunes ont montré des différences significatives au niveau de plusieurs régions cérébrales, mais pas les âgés. En conclusion, notre première étude a montré, lors du set-shifting, un délai de l’activité cérébrale chez les personnes âgées. Cela nous a permis de conceptualiser l’Hypothèse Temporelle de Compensation (troisième manuscrit) qui consiste en l’existence d’un mécanisme compensatoire caractérisé par un délai d’activité cérébrale lié au vieillissement permettant de préserver la cognition au détriment de la vitesse d’exécution. En ce qui concerne les processus langagiers (deuxième étude), les circuits sémantiques et phonologiques semblent se fusionner dans un seul circuit chez les individus âgés, cela représente vraisemblablement des mécanismes de réserve et de compensation neuronales qui permettent de préserver les habilités langagières.
Resumo:
Ce mémoire cherche à créer un dialogue entre les domaines de recherche du livre d’images et celui de recherches sur la paix afin d’exposer les différentes formes et fonctions des livres d’images pour la paix. Questionnant le pourquoi et le comment de ces œuvres, ce travail expose la façon et la manière avec lesquelles ces dernières contribuent à « l’alphabétisation de la paix » auprès des enfants et comment elles les motivent à agir en fonction de la paix. Les livres d’images constituent un média idéal pour éduquer les enfants à la paix. Très tôt dans le processus de socialisation, ces livres sauront transmettre et inculquer des concepts et aptitudes clefs et éventuellement ancrer dans l’esprit de l’enfant les valeurs d’une culture de la paix. Au centre de cette recherche est exposé le thème de la paix tel que traité à travers les œuvres de l’écrivaine autrichienne Mira Lobe (1913–1995). Par l’analyse de sept livres d’images pour la paix, ce travail explique quelles stratégies et méthodes littéraires, pédagogiques, sémiotiques, narratives et esthétiques sont employées par l’auteure pour réussir à bien présenter et à traiter de sujets politiques complexes et d’enjeux sociaux et humains parfois délicats et tabous à un jeune auditoire. Il montre également par quels moyens ces œuvres font naître l’empathie, une aversion pour la violence et comment elles pourront finalement amener les enfants à opter pour l’acte de la paix. En joignant et en mettant en relation les résultats et conclusions des deux champs de recherche observés dans ce travail, soit l’éducation à la paix et la recherche sur des livres d’images, il devient possible de démontrer comment Mira Lobe apporte, avec ses livres d’images pour la paix, une contribution universelle et intemporelle à l’éducation à la paix.
Resumo:
Les anomalies du tube neural (ATN) sont des anomalies développementales où le tube neural reste ouvert (1-2/1000 naissances). Afin de prévenir cette maladie, une connaissance accrue des processus moléculaires est nécessaire. L’étiologie des ATN est complexe et implique des facteurs génétiques et environnementaux. La supplémentation en acide folique est reconnue pour diminuer les risques de développer une ATN de 50-70% et cette diminution varie en fonction du début de la supplémentation et de l’origine démographique. Les gènes impliqués dans les ATN sont largement inconnus. Les études génétiques sur les ATN chez l’humain se sont concentrées sur les gènes de la voie métabolique des folates du à leur rôle protecteur dans les ATN et les gènes candidats inférés des souris modèles. Ces derniers ont montré une forte association entre la voie non-canonique Wnt/polarité cellulaire planaire (PCP) et les ATN. Le gène Protein Tyrosine Kinase 7 est un membre de cette voie qui cause l’ATN sévère de la craniorachischisis chez les souris mutantes. Ptk7 interagit génétiquement avec Vangl2 (un autre gène de la voie PCP), où les doubles hétérozygotes montrent une spina bifida. Ces données font de PTK7 comme un excellent candidat pour les ATN chez l’humain. Nous avons re-séquencé la région codante et les jonctions intron-exon de ce gène dans une cohorte de 473 patients atteints de plusieurs types d’ATN. Nous avons identifié 6 mutations rares (fréquence allélique <1%) faux-sens présentes chez 1.1% de notre cohorte, dont 3 sont absentes dans les bases de données publiques. Une variante, p.Gly348Ser, a agi comme un allèle hypermorphique lorsqu'elle est surexprimée dans le modèle de poisson zèbre. Nos résultats impliquent la mutation de PTK7 comme un facteur de risque pour les ATN et supporte l'idée d'un rôle pathogène de la signalisation PCP dans ces malformations.
Resumo:
Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).
Resumo:
La documentation scientifique fait état de la présence, chez l’adulte, de cellules souches et progénitrices neurales (CSPN) endogènes dans les zones sous-ventriculaire et sous-granulaire du cerveau ainsi que dans le gyrus denté de l’hippocampe. De plus, un postulat selon lequel il serait également possible de retrouver ce type de cellules dans la moelle épinière et le néocortex des mammifères adultes a été énoncé. L’encéphalopathie de Wernicke, un trouble neurologique grave toutefois réversible qui entraîne un dysfonctionnement, voire une défaillance du cerveau, est causée principalement par une carence importante en thiamine (CT). Des observations récentes laissent envisager que les facteurs en cause dans la prolifération et la différenciation des CSPN pourraient également jouer un rôle important lors d’un épisode de CT. L’hypothèse, selon laquelle l’identification de nouveaux métabolites entrant dans le mécanisme ou la séquence de réactions se soldant en une CT pourraient en faciliter la compréhension, a été émise au moyen d'une démarche en cours permettant d’établir le profil des modifications métaboliques qui surviennent en de telles situations. Cette approche a été utilisée pour constater les changements métaboliques survenus au niveau du foyer cérébral dans un modèle de rats déficients en thiamine (rats DT), particulièrement au niveau du thalamus et du colliculus inférieur (CI). La greffe de CSPN a quant à elle été envisagée afin d’apporter de nouvelles informations sur la participation des CSPN lors d’un épisode de CT et de déterminer les bénéfices thérapeutiques potentiels offerts par cette intervention. Les sujets de l’étude étaient répartis en quatre groupes expérimentaux : un premier groupe constitué de rats dont la CT était induite par la pyrithiamine (rats DTiP), un deuxième groupe constitué de rats-contrôles nourris ensemble (« pair-fed control rats » ou rats PFC) ainsi que deux groupes de rats ayant subi une greffe de CSPN, soit un groupe de rats DTiP greffés et un dernier groupe constitué de rats-contrôles (rats PFC) greffés. Les échantillons de foyers cérébraux (thalamus et CI) des quatre groupes de rats ont été prélevés et soumis à des analyses métabolomiques non ciblées ainsi qu’à une analyse visuelle par microscopie à balayage électronique (SEM). Une variété de métabolites-clés a été observée chez les groupes de rats déficients en thiamine (rats DTiP) en plus de plusieurs métabolites dont la documentation ne faisait pas mention. On a notamment constaté la présence d’acides biliaires, d’acide cynurénique et d’acide 1,9— diméthylurique dans le thalamus, alors que la présence de taurine et de carnosine a été observée dans le colliculus inférieur. L’étude a de plus démontré une possible implication des CSPN endogènes dans les foyers cérébraux du thalamus et du colliculus inférieur en identifiant les métabolites-clés ciblant les CSPN. Enfin, les analyses par SEM ont montré une amélioration notable des tissus à la suite de la greffe de CSPN. Ces constatations suggèrent que l’utilisation de CSPN pourrait s’avérer une avenue thérapeutique intéressante pour soulager la dégénérescence symptomatique liée à une grave carence en thiamine chez l’humain.
Resumo:
The mathematical formulation of empirically developed formulas Jirr the calculation of the resonant frequency of a thick-substrate (h s 0.08151 A,,) microstrip antenna has been analyzed. With the use qt' tunnel-based artificial neural networks (ANNs), the resonant frequency of antennas with h satisfying the thick-substrate condition are calculated and compared with the existing experimental results and also with the simulation results obtained with the use of an IE3D software package. The artificial neural network results are in very good agreement with the experimental results
Resumo:
In this paper, a comparison study among three neuralnetwork algorithms for the synthesis of array patterns is presented. The neural networks are used to estimate the array elements' excitations for an arbitrary pattern. The architecture of the neural networks is discussed and simulation results are presented. Two new neural networks, based on radial basis functions (RBFs) and wavelet neural networks (WNNs), are introduced. The proposed networks offer a more efficient synthesis procedure, as compared to other available techniques
Resumo:
Department of Biotechnology, Cochin University of Science and Technology
Resumo:
Neural Network has emerged as the topic of the day. The spectrum of its application is as wide as from ECG noise filtering to seismic data analysis and from elementary particle detection to electronic music composition. The focal point of the proposed work is an application of a massively parallel connectionist model network for detection of a sonar target. This task is segmented into: (i) generation of training patterns from sea noise that contains radiated noise of a target, for teaching the network;(ii) selection of suitable network topology and learning algorithm and (iii) training of the network and its subsequent testing where the network detects, in unknown patterns applied to it, the presence of the features it has already learned in. A three-layer perceptron using backpropagation learning is initially subjected to a recursive training with example patterns (derived from sea ambient noise with and without the radiated noise of a target). On every presentation, the error in the output of the network is propagated back and the weights and the bias associated with each neuron in the network are modified in proportion to this error measure. During this iterative process, the network converges and extracts the target features which get encoded into its generalized weights and biases.In every unknown pattern that the converged network subsequently confronts with, it searches for the features already learned and outputs an indication for their presence or absence. This capability for target detection is exhibited by the response of the network to various test patterns presented to it.Three network topologies are tried with two variants of backpropagation learning and a grading of the performance of each combination is subsequently made.