979 resultados para NATURAL IMAGES
Resumo:
We exploit a voting reform in France to estimate the causal effect of exit poll information on turnout and bandwagon voting. Before the change in legislation, individuals in some French overseas territories voted after the election result had already been made public via exit poll information from mainland France. We estimate that knowing the exit poll information decreases voter turnout by about 11 percentage points. Our study is the first clean empirical design outside of the laboratory to demonstrate the effect of such knowledge on voter turnout. Furthermore, we find that exit poll information significantly increases bandwagon voting; that is, voters who choose to turn out are more likely to vote for the expected winner.
Resumo:
The literacy demands of mathematics are very different to those in other subjects (Gough, 2007; O'Halloran, 2005; Quinnell, 2011; Rubenstein, 2007) and much has been written on the challenges that literacy in mathematics poses to learners (Abedi and Lord, 2001; Lowrie and Diezmann, 2007, 2009; Rubenstein, 2007). In particular, a diverse selection of visuals typifies the field of mathematics (Carter, Hipwell and Quinnell, 2012), placing unique literacy demands on learners. Such visuals include varied tables, graphs, diagrams and other representations, all of which are used to communicate information.
Resumo:
Study/Objective This research examines the types of emergency messages used in Australia during the response and early recovery phases of a natural disaster. The aim of the research is to develop theory-driven emergency messages that increase individual behavioural compliance during a disaster. Background There is growing evidence of non-compliant behaviour in Australia, such as refusing to evacuate and travelling through hazardous areas. This can result in personal injury, loss of life, and damage to (or loss of) property. Moreover, non-compliance can place emergency services personnel in life-threatening situations when trying to save non-compliant individuals. Drawing on message compliance research in psychology and sociology, a taxonomy of message types was developed to ascertain how emergency messaging can be improved to produce compliant behaviour. Method A review of message compliance literature was conducted to develop the taxonomy of message types previously found to achieve compliance. Seven categories were identified: direct-rational, manipulation, negative phrasing, positive phrasing, exchange appeals, normative appeals, and appeals to self. A content analysis was then conducted to assess the emergency messages evident in the Australian emergency management context. The existing messages were aligned with the literature to identify opportunities to improve emergency messaging. Results & Conclusion The results suggest there is an opportunity to improve the effectiveness of emergency messaging to increase compliance during the response and early recovery phases of a natural disaster. While some message types cannot legally or ethically be used in emergency communication (e.g. manipulative messaging), there is an opportunity to create more persuasive messages (e.g. appeals to self) that personalise the individual’s perception of risk, triggering them to comply with the message.
Resumo:
Affect is an important feature of multimedia content and conveys valuable information for multimedia indexing and retrieval. Most existing studies for affective content analysis are limited to low-level features or mid-level representations, and are generally criticized for their incapacity to address the gap between low-level features and high-level human affective perception. The facial expressions of subjects in images carry important semantic information that can substantially influence human affective perception, but have been seldom investigated for affective classification of facial images towards practical applications. This paper presents an automatic image emotion detector (IED) for affective classification of practical (or non-laboratory) data using facial expressions, where a lot of “real-world” challenges are present, including pose, illumination, and size variations etc. The proposed method is novel, with its framework designed specifically to overcome these challenges using multi-view versions of face and fiducial point detectors, and a combination of point-based texture and geometry. Performance comparisons of several key parameters of relevant algorithms are conducted to explore the optimum parameters for high accuracy and fast computation speed. A comprehensive set of experiments with existing and new datasets, shows that the method is effective despite pose variations, fast, and appropriate for large-scale data, and as accurate as the method with state-of-the-art performance on laboratory-based data. The proposed method was also applied to affective classification of images from the British Broadcast Corporation (BBC) in a task typical for a practical application providing some valuable insights.
Resumo:
An increasing number of studies analyze the relationship between natural disaster damage and income levels, but they do not consider the distinction between public and private disaster mitigation. This paper empirically distinguishes these two types of mitigation using Japanese prefectural panel data from 1975 to 2007. Our results show that public mitigation rather than private mitigation has contributed to mitigating the total damage resulting from natural disasters. Our estimation of cost-benefit ratios for each prefecture confirms that the mitigation efforts of urban prefectures are less effective than those of rural prefectures in focusing on both large and frequent/small disasters. Hence, urban prefectures need to reassess their public mitigation measures. Furthermore, to lessen the damage resulting from extreme catastrophes, policy makers are required to invest in improved mitigation infrastructures when faced with a high probability of disasters.
Resumo:
Australia’s governance arrangements for NRM have evolved considerably over the last thirty years. The impact of changes in governance on NRM planning and delivery requires assessment. We undertake a multi-method program evaluation using adaptive governance principles as an analytical frame and apply this to Queensland to assess the impacts of governance change on NRM planning and governance outcomes. Data to inform our analysis includes: 1) a systematic review of sixteen audits/evaluations of Australian NRM over a fifteen-year period; 2) a review of Queensland’s first generation NRM Plans; and 3) outputs from a Queensland workshop on NRM planning. NRM has progressed from a bottom-up grassroots movement into a collaborative regional NRM model that has been centralised by the Australian Government. We found that while some adaptive governance challenges have been addressed, others remained unresolved. Results show that collaboration and elements of multi-level governance under the regional model were positive moves, but also that NRM arrangements contained structural deficiencies across multiple governance levels in relation to public involvement in decision-making and knowledge production for problem responsiveness. These problems for adaptive governance have been exacerbated since 2008. We conclude that the adaptive governance framework for NRM needs urgent attention so that important environmental management problems can be addressed.
Resumo:
Marble from the Chillagoe deposits was extensively used in the construction of Australia’s parliament house. Near infrared (NIR) spectroscopy has been applied to study the quality of marble from the Chillagoe marble deposits and to distinguish between different types of marble in the Chillagoe deposits. A comparison of the NIR spectra of marble with dolomite and monohydrocalcite is made. The spectrum of the marble closely resembles that of monohydrocalcite and is different from that of dolomite. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra. Marble is characterised by NIR bands at 4005, 4268 and 4340 cm–1, attributed to carbonate combination bands and overtones. Marble also shows NIR bands at 5005, 5106, 5234 and 5334 cm–1 assigned to water combination bands. Finally the NIR spectrum of the marble displays broad low-intensity features centred upon 6905 cm–1 attributed to the water first overtones. It appears feasible to identify marble through the use of NIR spectroscopy.
Resumo:
The approach to remove greenhouse gases by pumping liquid CO2 several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals, the formation of hydromagnesite, dypingite and nesquehonite are possible, thus necessitating a study of such minerals. These minerals with a hydrotalcite-related formulae have been characterised by a combination of infrared and near infrared spectroscopy. Layered double hydroxides (also known as anionic clays or hydrotalcites) are a group of layered clay minerals described by the general formula: [M1–x2+Mx3+(OH)2]x+[An–]x/n∙mH2O. The infrared spectra of the minerals are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030–7235 cm–1 and 10,490–10,570 cm–1 spectral ranges. Intense (CO3)2– symmetrical and anti-symmetrical stretching vibrations confirm the distortion of the carbonate anion. The position of the water bending vibration indicates water is strongly hydrogen-bonded to the carbonate anion in the mineral structure. NIR spectroscopy offers a method for quickly analysing such materials.
Resumo:
Husserl reminded us of the imperative to return to the Lebensweldt, or life-world. He was preoccupied with the crisis of Western science which alienated the experiencing self from the world of immediate experience. Immediate experience provides a foundation for what it means to be human. Heidegger, building upon these ideas, foresaw a threat to human nature in the face of ‘technicity’. He argued for a return to a relationship between ‘authentic self’ and nature predicated upon the notion of ‘letting be’ in which humans are open to the mystery of being. Self and nature are not conceived as alienated entities but as aspects of a single entity. In modern times, separation between self and the world is further evidenced by scientific rational modes of being exemplified through consumerism and the incessant use of screen-based technology which dominate human experience. In contrast, extreme sports provide an opportunity for people to return to the life-world by living in relation to the natural world. Engagement in extreme sports enables a return to authenticity as we rediscover self as part of nature.
Resumo:
This thesis introduces a new way of using prior information in a spatial model and develops scalable algorithms for fitting this model to large imaging datasets. These methods are employed for image-guided radiation therapy and satellite based classification of land use and water quality. This study has utilized a pre-computation step to achieve a hundredfold improvement in the elapsed runtime for model fitting. This makes it much more feasible to apply these models to real-world problems, and enables full Bayesian inference for images with a million or more pixels.
Resumo:
The past decade has seen an increase in the occurrence of natural hazards and the experience in Australia has led to a reconsideration of the planning for natural hazards by government and to the adoption of a whole-of-nation resilience-based approach to disaster management. A key component of creating community resilience is the integration of disaster management with government and community strategic planning in relation to the social, built, economic and natural environments. Joint responsibility of government and the community for ‘land use planning systems and building control arrangements [which] reduce, as far as is practicable, community exposure to unreasonable risks from known hazards’, is a critical element of a resilient community. As the responsibility for the implementation of land use planning policies in Australia is generally with local governments, this paper will examine whether, in light of improved predictive technology, the failure of a local government to adequately foresee and make provision for a known hazard will give rise to liability for damage or loss of property caused by that hazard.
Resumo:
We extended genetic linkage analysis - an analysis widely used in quantitative genetics - to 3D images to analyze single gene effects on brain fiber architecture. We collected 4 Tesla diffusion tensor images (DTI) and genotype data from 258 healthy adult twins and their non-twin siblings. After high-dimensional fluid registration, at each voxel we estimated the genetic linkage between the single nucleotide polymorphism (SNP), Val66Met (dbSNP number rs6265), of the BDNF gene (brain-derived neurotrophic factor) with fractional anisotropy (FA) derived from each subject's DTI scan, by fitting structural equation models (SEM) from quantitative genetics. We also examined how image filtering affects the effect sizes for genetic linkage by examining how the overall significance of voxelwise effects varied with respect to full width at half maximum (FWHM) of the Gaussian smoothing applied to the FA images. Raw FA maps with no smoothing yielded the greatest sensitivity to detect gene effects, when corrected for multiple comparisons using the false discovery rate (FDR) procedure. The BDNF polymorphism significantly contributed to the variation in FA in the posterior cingulate gyrus, where it accounted for around 90-95% of the total variance in FA. Our study generated the first maps to visualize the effect of the BDNF gene on brain fiber integrity, suggesting that common genetic variants may strongly determine white matter integrity.
Resumo:
We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or $J$-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the $J$-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data.
Resumo:
Reliable quantitative analysis of white matter connectivity in the brain is an open problem in neuroimaging, with common solutions requiring tools for fiber tracking, tractography segmentation and estimation of intersubject correspondence. This paper proposes a novel, template matching approach to the problem. In the proposed method, a deformable fiber-bundle model is aligned directly with the subject tensor field, skipping the fiber tracking step. Furthermore, the use of a common template eliminates the need for tractography segmentation and defines intersubject shape correspondence. The method is validated using phantom DTI data and applications are presented, including automatic fiber-bundle reconstruction and tract-based morphometry. © 2009 Elsevier Inc. All rights reserved.
Resumo:
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA-DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18-85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).