414 resultados para NANOSTRUCTURE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La morphologie des couches actives des cellules solaires organiques joue un rôle important sur l’efficacité de conversion de l’énergie solaire en énergie électrique de ces dispositifs. Les hétérojonctions planaires et les hétérojonctions en volume sont les plus communément utilisées. Cependant, la morphologie idéale pour l’efficacité se situerait à mis chemin entre celles-ci. Il s’agit de l’hétérojonction nanostructurée qui augmenterait la surface entre les couches actives de matériaux tout en favorisant le transport des porteurs de charge. L’objectif de ce projet de maîtrise est d’étudier l’impact de l’implantation de nanostructures dans les cellules solaires organiques sur leurs performances photovoltaïques. Pour ce faire, on utilise la méthode de nanoimpression thermique sur le matériau donneur, le P3HT, afin que celui-ci forme une interface nanostructurée avec le matériau accepteur, le PCBM. Pour effectuer les nanoimpressions, des moules en alumine nanoporeuse ont été fabriqués à l’aide du procédé d’anodisation en deux temps développé par Masuda et al. Ces moules ont subi un traitement afin de faciliter leur séparation du P3HT. Les agents antiadhésifs PDMS et FTDS ont été utilisés à cette fin. Les résultats obtenus témoignent de la complexité d’exécution du procédé de nanoimpression. Il a été démontré que la pression appliquée durant le procédé, la tension superficielle des éléments en contact et les dimensions des nanopores des moules sont des paramètres critiques pour le succès des nanoimpressions. Ceux-ci ont donc dû être optimisés de manière à réussir cette opération. Ainsi, des cellules à interface nanostructurée à 25% avec des nanobâtonnets de 35 nm de hauteur ont pu être fabriquées. Les cellules nanostructurées ont démontré une efficacité 2,3 ± 0,6 fois supérieure aux cellules sans nanostructures, dites planaires. D’autre part, un solvant a été proposé pour diminuer l’interdiffusion entre les couches de P3HT et de PCBM pouvant altérer les nanostructures. Ce phénomène bien connu survient lors du dépot de la couche de PCBM avec le dichlorométhane, un solvant orthogonal avec ces matériaux. Des mesures au TOF-SIMS ont démontré que le limonène permet de diminuer l’interdiffusion entre les couches de P3HT et de PCBM, ce qui en fait un meilleur solvant orthogonal que le dichlorométhane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os nanomateriais apresentam uma escala na qual ao menos uma das dimensões varia entre 1 e 100 nm e possuem propriedades químicas, físicas ou biológicas dependentes da nanoestrutura e que lhes confere características funcionais de interesse para fins comerciais ou aplicações na área médica. Dentre os nanomateriais mais estudados e utilizados, destacam-se os de carbono, que incluem os fulerenos e os nanotubos de carbono (NT). Uma potencial utilização dos nanomateriais de carbono é na área biomédica, já que estes podem interagir com os sistemas biológicos em nível molecular e supramolecular com alto grau de especificidade. Em contrapartida, é importante considerar que os nanotubos de carbono podem exercer efeitos tóxicos, tendo como possível mecanismo o estresse oxidativo. Sendo assim, o objetivo desse trabalho foi investigar a ação dos nanotubos de carbono de parede única funcionalizados com polietilenoglicol (SWNT-PEG) em Danio rerio “zebrafish” (Teleostei, Cyprinidae). Avaliaram-se parâmetros bioquímicos, histológicos, comportamentais e de biodistribuição para entender como esse material se comporta in vitro e in vivo. Foi observado que o tipo de funcionalização é determinante para a ação desse material em meio biológico. No experimento in vitro o SWNT-PEG não mostrou efeito pró-oxidante nas avaliações de peroxidação lipídica, capacidade antioxidante total, conteúdo de GSH e atividade de GCL. Na exposição intraperitoneal em zebrafish constatou-se a agregação e geração de processo inflamatório, o que sugere que a cadeia de PEG utilizada para a funcionalização dos NT possui um tamanho inadequado e/ou uma funcionalização ineficiente para manter a estabilidade do material em meio biológico e evitar uma resposta inflamatória por parte do organismo exposto. Possivelmente devido a esta característica do nanomaterial, nas análises de biodistribuição, através de espectroscopia Raman, não se observou distribuição de SWNT-PEG no sistema nervoso central de zebrafish. No entanto, através da análise histológica foi observado processo inflamatório no tecido nervoso central, bem como alterações comportamentais avaliadas na tarefa de campo aberto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 15-deoxy-(Delta 12,14)-PG J(2) (15d-PGJ(2)) has demonstrated excellent anti-inflammatory results in different experimental models. It can be used with a polymeric nanostructure system for modified drug release, which can change the therapeutic properties of the active principle, leading to increased stability and slower/prolonged release. The aim of the current study was to test a nano-technological formulation as a carrier for 15d-PGJ(2), and to investigate the immunomodulatory effects of this formulation in a mouse periodontitis model. Poly (D, L-lactide-coglycolide) nanocapsules (NC) were used to encapsulate 15d-PGJ(2). BALB/c mice were infected on days 0, 2, and 4 with Aggregatibacter actinomycetemcomitans and divided into groups (n = 5) that were treated daily during 15 d with 1, 3, or 10 mu g/kg 15d-PGJ(2)-NC. The animals were sacrificed, the submandibular lymph nodes were removed for FACS analysis, and the jaws were analyzed for bone resorption by morphometry. Immunoinflammatory markers in the gingival tissue were analyzed by reverse transcriptase-quantitative PCR, Western blotting, or ELISA. Infected animals treated with the 15d-PGJ(2)-NC presented lower bone resorption than infected animals without treatment (p < 0.05). Furthermore, infected animals treated with 10 mu g/kg 15d-PGJ(2)-NC had a reduction of CD4(+)CD25(+)FOXP3(+) cells and CD4/CD8 ratio in the submandibular lymph node (p < 0.05). Moreover, CD55 was upregulated, whereas RANKL was downregulated in the gingival tissue of the 10 mu g/kg treated group (p < 0.05). Several proinflammatory cytokines were decreased in the group treated with 10 mu g/kg 15d-PGJ(2)-NC, and high amounts of 15d-PGJ(2) were observed in the gingiva. In conclusion, the 15d-PGJ(2)-NC formulation presented immunomodulatory effects, decreasing bone resorption and inflammatory responses in a periodontitis mouse model. The Journal of Immunology, 2012, 189: 1043-1052.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graphene, a remarkable 2D material, has attracted immense attention for its unique physical properties that make it ideal for a myriad of applications from electronics to biology. Fundamental to many such applications is the interaction of graphene with water, necessitating an understanding of wetting of graphene. Here, molecular dynamics simulations have been employed to understand two fundamental issues of water drop wetting on graphene: (a) the dynamics of graphene wetting and (b) wetting of graphene nanostructures. The first problem unravels that the wetting dynamics of nanodrops on graphene are exactly the same as on standard, non-2D (or non-layered) solids – this is an extremely important finding given the significant difference in the wetting statics of graphene with respect to standard solids stemming from graphene’s wetting translucency effect. This same effect, as shown in the second problem, interplays with roughness introduced by nanostructures to trigger graphene superhydrophobicity following a hitherto unknown route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pronounced electrocatalytic oxidation enhancement at the surface of InGaN layers and nanostructures directly grown on Si by plasma-assisted molecular beam epitaxy is demonstrated. The oxidation enhancement, probed with the ferro/ferricyanide redox couple increases with In content and proximity of nanostructure surfaces and sidewalls to the c-plane. This is attributed to the corresponding increase of the density of intrinsic positively charged surface donors promoting electron transfer. Strongest enhancement is for c-plane InGaN layers functionalized with InN quantum dots (QDs). These results explain the excellent performance of our InN/InGaN QD biosensors and water splitting electrodes for further boosting efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.