977 resultados para Mutation (Biologie)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

P>Objective Adiponectin is an important mediator of insulin sensitivity, encoded by the ADIPOQ gene. Here we describe two Japanese-Brazilian families with hypoadiponectinaemia due to a novel mutation in ADIPOQ. Design and patients In this study, we examined the entire translated regions of adiponectin in Japanese-Brazilians, a population with one of the highest prevalence rates of diabetes worldwide. We screened 200 patients with type 2 diabetes (DM) and 240 age-matched subjects with normal glucose tolerance. Results A novel heterozygous T deletion at position 186 in exon 2 of ADIPOQ, causing a frameshift at codon 62 and leading to a premature termination at codon 168 (p.Gly63ValfsX106), was found in two individuals with diabetes. This mutation was not found in 240 nondiabetic control subjects. In addition, we screened the mutation in an expanded set of 100 nondiabetic subjects from the general Brazilian population, but we found no mutations. In addition, six family members of the probands were identified as mutation-carriers. Individuals who were mutation-carriers had markedly low plasma adiponectin concentrations compared with those without the mutation [DM: 0 center dot 65 (0 center dot 59-1 center dot 34) mu g/ml vs. 5 center dot 30 (3 center dot 10-8 center dot 55) mu g/ml, P < 0 center dot 0001; normal glucose tolerance: 0 center dot 95 (0 center dot 76-1 center dot 48) mu g/ml vs. 8 center dot 50 (5 center dot 52-14 center dot 55) mu g/ml, P = 0 center dot 003]. All individuals carrying the p.Gly63ValfsX106 mutation and older than 30 years were found to be diabetic. Conclusions We describe for the first time a frameshift mutation in exon 2 of the ADIPOQ gene, which modulates adiponectin levels and may contribute to the genetic risk of late-onset diabetes in Japanese-Brazilians.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the Na+-HCO3- cotransporter NBC1 cause severe proximal tubular acidosis (pRTA) associated with ocular abnormalities. Recent studies have suggested that at least some NBC1 mutants show abnormal trafficking in the polarized cells. This study identified a new homozygous NBC1 mutation (G486R) in a patient with severe pRTA. Functional analysis in Xenopus oocytes failed to detect the G486R activity due to poor surface expression. In ECV304 cells, however, G486R showed the efficient membrane expression, and its transport activity corresponded to approximately 50% of wild-type (WT) activity. In Madin-Darby canine kidney (MDCK) cells, G486R was predominantly expressed in the basolateral membrane domain as observed for WT. Among the previously identified NBC1 mutants that showed poor surface expression in oocytes, T485S showed the predominant basolateral expression in MDCK cells. On the other hand, L522P was exclusively retained in the cytoplasm in ECV304 and MDCK cells, and functional analysis in ECV304 cells failed to detect its transport activity. These results indicate that G486R, like T485S, is a partial loss of function mutation without major trafficking abnormalities, while L522P causes the clinical phenotypes mainly through its inability to reach the plasma membranes. Multiple experimental approaches would be required to elucidate potential disease mechanism by NBC1 mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The etiologies and clinical spectra of HPE are extremely heterogeneous. Here, we report a Brazilian boy with lobar holoprosencephaly who was ascertained in a sample of 60 patients with HPE and HPE-like phenotypes and screened for molecular analysis of the major HPE causative genes: SHH, PTCH, SIX3, GLI2, and TGIF This boy presented a p.K44N (c.132G > T) mutation in exon 2 of the TGIF gene which was inherited from his phenotypically normal mother. This mutation leads to lysine to arginine amino acid change and is predicted to be a damaging mutation. Clinical aspects involving variable phenotypical manifestations in different mutations of TGIF are discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carpenter syndrome, a rare autosomal recessive disorder characterized by a combination of craniosynostosis, polysyndactyly, obesity, and other congenital malformations, is caused by mutations in RAB23, encoding a member of the Rab-family of small GTPases. In 15 out of 16 families previously reported, the disease was caused by homozygosity for truncating mutations, and currently only a single missense mutation has been identified in a compound heterozygote. Here, we describe a further 8 independent families comprising 10 affected individuals with Carpenter syndrome, who were positive for mutations in RAB23. We report the first homozygous missense mutation and in-frame deletion, highlighting key residues for RAB23 function, as well as the first splice-site mutation. Multi-suture craniosynostosis and polysyndactyly have been present in all patients described to date, and abnormal external genitalia have been universal in boys. High birth weight was not evident in the current group of patients, but further evidence for laterality defects is reported. No genotype-phenotype correlations are apparent. We provide experimental evidence that transcripts encoding truncating mutations are subject to nonsense-mediated decay, and that this plays an important role in the pathogenesis of many RAB23 mutations. These observations refine the phenotypic spectrum of Carpenter syndrome and offer new insights into molecular pathogenesis. (C) 2011 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Iodide transport defect (ITD) is an autosomal recessive disorder caused by impaired Na(+)/I(-) symporter (NIS)-mediated active iodide accumulation into thyroid follicular cells. Clinical manifestations comprise a variable degree of congenital hypothyroidism and goiter, and low to absent radioiodide uptake, as determined by thyroid scintigraphy. Hereditary molecular defects in NIS have been shown to cause ITD. Objective: Our objective was to perform molecular studies on NIS in a patient with congenital hypothyroidism presenting a clinical ITD phenotype. Design: The genomic DNA encoding NIS was sequenced, and an in vitro functional study of a newly identified NIS mutation was performed. Results: The analysis revealed the presence of an undescribed homozygous C to T transition at nucleotide -54 (-54C>T) located in the 5`-untranslated region in the NIS sequence. Functional studies in vitro demonstrated that the mutation was associated with a substantial decrease in iodide uptake when transfected into Cos-7 cells. The mutation severely impaired NIS protein expression, although NIS mRNA levels remained similar to those in cells transfected with wild-type NIS, suggesting a translational deficiency elicited by the mutation. Polysome profile analysis demonstrated reduced levels of polyribosomes-associated mutant NIS mRNA, consistent with reduced translation efficiency. Conclusions: We described a novel mutation in the 5`-untranslated region of the NIS gene in a newborn with congenital hypothyroidism bearing a clinical ITD phenotype. Functional evaluation of the molecular mechanism responsible for impaired NIS-mediated iodide concentration in thyroid cells indicated that the identified mutation reduces NIS translation efficiency with a subsequent decrease in protein expression and function. (J Clin Endocrinol Metab 96: E1100-E1107, 2011)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic amyloid light-chain (LC) amyloidosis is a disease process characterized by the pathological deposition of monoclonal LCs in tissue. All LC subtypes are capable of fibril formation although lambda chains, particularly those belonging to the lambda 6 type, are overrepresented. Here, we report the thermodynamic and in vitro fibrillogenic properties of several mutants of the lambda 6 protein 6aJL2 in which Pro7 and/or His8 was substituted by Ser or Pro. The H8P and H8S mutants were almost as stable as the wildtype protein and were poorly fibrillogenic. In contrast, the P7S mutation decreased the thermodynamic stability of 6aJL2 and greatly enhanced its capacity to form amyloid-like fibrils in vitro. The crystal structure of the P7S mutant showed that the substitution induced both local and long-distance effects, such as the rearrangement of the V(L) (variable region of the light chain)-V(L) interface. This mutant crystallized in two orthorhombic polymorphs, P2(1)2(1)2(1) and C222(1). In the latter, a monomer that was not arranged in the typical Bence-Jones dimer was observed for the first time. Crystal-packing analysis of the C222(1) lattice showed the establishment of intermolecular beta-beta interactions that involved the N-terminus and beta-strand B and that these could be relevant in the mechanism of LC fibril formation. Our results strongly suggest that Pro7 is a key residue in the conformation of the N-terminal sheet switch motif and, through long-distance interactions, is also critically involved in the contacts that stabilized the V(L) interface in lambda 6 LCs. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we present a boy with lower lip pits, distinct craniofacial dysmorphism with cleft lip and palate, central nervous system malformation, and severe mental retardation. Similar but less pronounced facial findings were present in his mentally normal mother and maternal grandfather, both presenting with lower lip pits. Cleft lip was present in patient's father. Analysis of the VWS1 and VWS2 regions were performed to elucidate the molecular basis of the phenotype of the propositus. Screening or mutations at the IRF6 gene detected a pathogenic mutation (c.960G > C) in the propositus and in his mother; and a single nucleotide polymorphism (c.175-5C > G) in the propositus and in his father. Clinical and genetic aspects of this case are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Congenital hypothyroidism associated with thyroid hypoplasia can be caused by several genetic defects, including mutations in the TSH beta -subunit, the TSH receptor, the G(A)alpha -subunit, and the transcription factor PAX8. Four girls with sporadic congenital hypothyroidism and hypoplastic thyroid glands were analyzed for mutations in PAX8 and TTF2 (FKHL15). Mutations in the coding region of the TSH beta -subunit gene, the TSH receptor gene, and exons 8 and 9 of G(mu)alpha had been excluded previously. Serum TSH concentrations were 150 mU/liter or more, TG levels were within normal limits, and thyroid autoantibodies were absent. Technetium scintigraphies did not reveal the presence of thyroid tissue, but ultrasonography documented hypoplastic, normally located glands.One patient was found to harbor a heterozygous transversion 119A -->C in exon 3 of PAX8 replacing a conserved glutamine by proline in the paired box domain (Q40P). Analysis of her family members revealed that her mother, who has a thyroid gland of normal size and mild, adult-onset autoimmune hypothyroidism, is also heterozygous for this mutation. Functional analyses of the PAX8 Q40P mutation showed impaired binding to a PAX8 response element and absent transactivation of a thyroid peroxidase promoter luciferase reporter gene.These findings confirm the important role of PAX8 in the development of the thyroid, but they indicate that PAX8 gene mutations may have a variable penetrance or expressivity. The absence of mutations in the coding sequences of the analyzed genes in the three other patients supports the concept that the pathogenesis of congenital hypothyroidism associated with thyroid hypoplasia is diverse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the high number of new cancer cases in Brazil (approximately 470 000 cases in 2005) and the remarkable differences in the incidence of this disease around the world, the development of chemopreventive strategies using foods widely consumed would have a huge impact, both medically and economically. This review summarizes some of our studies conducted to verify the anti-mutagenic and anti-carcinogenic potential of some Brazilian natural dietary constituents (annatto, mushrooms, and propolis). Overall data have shown a clear role for these compounds in preventing mutation and specific preneoplastic lesions. Taken together, these agents indicate a favorable side-effect profile and may prove to be a promising alternative for cancer prevention strategies, although more investigation is needed to fully explore this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is not always possible to reduce human exposure to mutagens, attempts have been directed to identify potential antimutagens and anticarcinogens for use in protecting the population against environmental disease. The purpose of this paper is to provide the reader with information about the antimutagenic and anticarcinogenic potentials of some dietary constituents and foods widely consumed in Brazil, and to reinforce diet as a key factor in determining genomic stability and preventing human diseases. In this report, we have summarized data that show interactive effects between some dietary components and specific chemical mutagens or carcinogens using in vitro and in vivo short- or medium-term assays. The summary indicates that certain dietary compounds may be useful agents for disease prevention. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Oculocutaneous albinism (OCA) is an autosomal recessive hereditary pigmentation disorder affecting humans and several other animal species. Oculocutaneous albinism was studied in a herd of Murrah buffalo to determine the clinical presentation and genetic basis of albinism in this species.Results: Clinical examinations and pedigree analysis were performed in an affected herd, and wild-type and OCA tyrosinase mRNA sequences were obtained. The main clinical findings were photophobia and a lack of pigmentation of the hair, skin, horns, hooves, mucosa, and iris. The results of segregation analysis suggest that this disease is acquired through recessive inheritance. In the OCA buffalo, a single-base substitution was detected at nucleotide 1,431 (G to A), which leads to the conversion of tryptophan into a stop codon at residue 477.Conclusion: This premature stop codon produces an inactive protein, which is responsible for the OCA buffalo phenotype. These findings will be useful for future studies of albinism in buffalo and as a possible model to study diseases caused by a premature stop codon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)