893 resultados para Motion perception (Vision)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visually impaired people show superior abilities in various perception tasks such as auditory attention, auditory temporal resolution, auditory spatial tuning, and odor discrimination. However, with the use of psychophysical methods, auditory and olfactory detection thresholds typically do not differ between visually impaired and sighted participants. Using a motion platform we investigated thresholds of passive whole-body motion discrimination in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the y-axis at two different frequencies (0.3 Hz and 2 Hz). An adaptive 3-down 1-up staircase procedure was used along with a two-alternative direction (leftward vs. rightward) discrimination task. Superior performance of visually impaired participants was found in the 0.3 Hz roll tilt condition. No differences between the visually impaired and controls were observed in all other types of motion. The superior performance in the 0.3 Hz roll tilt condition could reflect differences in the integration of extra-vestibular cues and increased sensitivity towards changes in the direction of the gravito-inertial force. In the absence of visual information, roll tilts entail a more pronounced risk of falling, and this could eventually account for the group difference. It is argued that differences in experimental procedures (i.e. detection vs. discrimination of stimuli) explain the discrepant findings across perceptual tasks comparing blind and sighted participants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Although it seems plausible that sports performance relies on high-acuity foveal vision, it could be empirically shown that myoptic blur (up to +2 diopters) does not harm performance in sport tasks that require foveal information pick-up like golf putting (Bulson, Ciuffreda, & Hung, 2008). How myoptic blur affects peripheral performance is yet unknown. Attention might be less needed for processing visual cues foveally and lead to better performance because peripheral cues are better processed as a function of reduced foveal vision, which will be tested in the current experiment. Methods: 18 sport science students with self-reported myopia volunteered as participants, all of them regularly wearing contact lenses. Exclusion criteria comprised visual correction other than myopic, correction of astigmatism and use of contact lenses out of Swiss delivery area. For each of the participants, three pairs of additional contact lenses (besides their regular lenses; used in the “plano” condition) were manufactured with an individual overcorrection to a retinal defocus of +1 to +3 diopters (referred to as “+1.00 D”, “+2.00 D”, and “+3.00 D” condition, respectively). Gaze data were acquired while participants had to perform a multiple object tracking (MOT) task that required to track 4 out of 10 moving stimuli. In addition, in 66.7 % of all trials, one of the 4 targets suddenly stopped during the motion phase for a period of 0.5 s. Stimuli moved in front of a picture of a sports hall to allow for foveal processing. Due to the directional hypotheses, the level of significance for one-tailed tests on differences was set at α = .05 and posteriori effect sizes were computed as partial eta squares (ηρ2). Results: Due to problems with the gaze-data collection, 3 participants had to be excluded from further analyses. The expectation of a centroid strategy was confirmed because gaze was closer to the centroid than the target (all p < .01). In comparison to the plano baseline, participants more often recalled all 4 targets under defocus conditions, F(1,14) = 26.13, p < .01, ηρ2 = .65. The three defocus conditions differed significantly, F(2,28) = 2.56, p = .05, ηρ2 = .16, with a higher accuracy as a function of a defocus increase and significant contrasts between conditions +1.00 D and +2.00 D (p = .03) and +1.00 D and +3.00 D (p = .03). For stop trials, significant differences could neither be found between plano baseline and defocus conditions, F(1,14) = .19, p = .67, ηρ2 = .01, nor between the three defocus conditions, F(2,28) = 1.09, p = .18, ηρ2 = .07. Participants reacted faster in “4 correct+button” trials under defocus than under plano-baseline conditions, F(1,14) = 10.77, p < .01, ηρ2 = .44. The defocus conditions differed significantly, F(2,28) = 6.16, p < .01, ηρ2 = .31, with shorter response times as a function of a defocus increase and significant contrasts between +1.00 D and +2.00 D (p = .01) and +1.00 D and +3.00 D (p < .01). Discussion: The results show that gaze behaviour in MOT is not affected to a relevant degree by a visual overcorrection up to +3 diopters. Hence, it can be taken for granted that peripheral event detection was investigated in the present study. This overcorrection, however, does not harm the capability to peripherally track objects. Moreover, if an event has to be detected peripherally, neither response accuracy nor response time is negatively affected. Findings could claim considerable relevance for all sport situations in which peripheral vision is required which now needs applied studies on this topic. References: Bulson, R. C., Ciuffreda, K. J., & Hung, G. K. (2008). The effect of retinal defocus on golf putting. Ophthalmic and Physiological Optics, 28, 334-344.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To assess the visual performance of Swiss hand surgeons in an environment similar to their workplace. The influence of Galilean (lenses only) and Keplerian loupes (lenses and prisms), the surgeon's age, and the credibility of a self-assessment of his or her own optical performance were evaluated. METHODS Sixty-three hand surgeons between 29 and 68 years of age with 70 loupes were included in the study (Galilean n = 35, Keplerian n = 35). The visual performance as surgeons was self-assessed on a modified visual analog scale and objectively measured with miniaturized visual tests in a simulated clinical setting. We evaluated the influence of the optical device by comparing Galilean and Keplerian loupes and the influence of the surgeon's age by comparing 2 subgroups: < 40 years and ≥ 40 years. RESULTS The correlation between self-assessment and objective visual performance was weak, with a Spearman rank correlation coefficient of 0.25. The near visual acuity with habitual optical aids showed considerable variability, with a range of 300% in the dimension of the smallest detected structure. The near visual acuity was significantly lower in the older group ≥ 40 years than in the younger group < 40 years with both Galilean and Keplerian loupes. Keplerian loupes allowed a significantly higher visual performance than Galilean loupes. Surgeons 40 years or older using Keplerian loupes had a similar visual acuity to surgeons younger than 40 years with Galilean loupes. CONCLUSIONS The magnified near vision of hand surgeons showed an important individual variability. Self-assessment was not a valuable instrument for surgeons to estimate their own near vision. Hand surgeons older than 40 years should use higher magnification loupes. TYPE OF STUDY/LEVEL OF EVIDENCE Diagnostic III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retinal detachment is a common ophthalmologic procedure, and outcome is typically measured by a single factor-improvement in visual acuity. Health related functional outcome testing, which quantifies patient's self-reported perception of impairment, can be integrated with objective clinical findings. Based on the patient's self-assessed lifestyle impairment, the physician and patient together can make an informed decision on the treatment that is most likely to benefit the patient. ^ A functional outcome test (the Houston Vision Assessment Test-Retina; HVAT-Retina) was developed and validated in patients with multiple retinal detachments in the same eye. The HVAT-Retina divides an estimated total impairment into subcomponents: contribution of visual disability (potentially correctable by retinal detachment surgery) and nonvisual physical disabilities (co-morbidities not affected by retinal detachment surgery. ^ Seventy-six patients participated in this prospective multicenter study. Seven patients were excluded from the analysis because they were not certain of their answers. Cronbach's alpha coefficient was 0.91 for presurgery HVAT-Retina and 0.94 post-surgery. The item-to-total correlation ranged from 0.50 to 0.88. Visual impairment score improved by 9 points from pre-surgery (p = 0.0003). Physical impairment score also improved from pre-surgery (p = 0.0002). ^ In conclusion, the results of this study demonstrate that the instrument is reliable and valid in patients presenting with recurrent retinal detachments. The HVAT-Retina is a simple instrument and does not burden the patient or the health professional in terms of time or cost. It may be self-administrated, not requiring an interviewer. Because the HVAT-Retina was designed to demonstrate outcomes perceivable by the patient, it has the potential to guide the decision making process between patient and physician. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a marvelous but somewhat neglected paper, 'The Corporation: Will It Be Managed by Machines?' Herbert Simon articulated from the perspective of 1960 his vision of what we now call the New Economy the machine-aided system of production and management of the late twentieth century. Simon's analysis sprang from what I term the principle of cognitive comparative advantage: one has to understand the quite different cognitive structures of humans and machines (including computers) in order to explain and predict the tasks to which each will be most suited. Perhaps unlike Simon's better-known predictions about progress in artificial intelligence research, the predictions of this 1960 article hold up remarkably well and continue to offer important insights. In what follows I attempt to tell a coherent story about the evolution of machines and the division of labor between humans and machines. Although inspired by Simon's 1960 paper, I weave many other strands into the tapestry, from classical discussions of the division of labor to present-day evolutionary psychology. The basic conclusion is that, with growth in the extent of the market, we should see humans 'crowded into' tasks that call for the kinds of cognition for which humans have been equipped by biological evolution. These human cognitive abilities range from the exercise of judgment in situations of ambiguity and surprise to more mundane abilities in spatio-temporal perception and locomotion. Conversely, we should see machines 'crowded into' tasks with a well-defined structure. This conclusion is not based (merely) on a claim that machines, including computers, are specialized idiots-savants today because of the limits (whether temporary or permanent) of artificial intelligence; rather, it rests on a claim that, for what are broadly 'economic' reasons, it will continue to make economic sense to create machines that are idiots-savants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En esta tesis se aborda la detección y el seguimiento automático de vehículos mediante técnicas de visión artificial con una cámara monocular embarcada. Este problema ha suscitado un gran interés por parte de la industria automovilística y de la comunidad científica ya que supone el primer paso en aras de la ayuda a la conducción, la prevención de accidentes y, en última instancia, la conducción automática. A pesar de que se le ha dedicado mucho esfuerzo en los últimos años, de momento no se ha encontrado ninguna solución completamente satisfactoria y por lo tanto continúa siendo un tema de investigación abierto. Los principales problemas que plantean la detección y seguimiento mediante visión artificial son la gran variabilidad entre vehículos, un fondo que cambia dinámicamente debido al movimiento de la cámara, y la necesidad de operar en tiempo real. En este contexto, esta tesis propone un marco unificado para la detección y seguimiento de vehículos que afronta los problemas descritos mediante un enfoque estadístico. El marco se compone de tres grandes bloques, i.e., generación de hipótesis, verificación de hipótesis, y seguimiento de vehículos, que se llevan a cabo de manera secuencial. No obstante, se potencia el intercambio de información entre los diferentes bloques con objeto de obtener el máximo grado posible de adaptación a cambios en el entorno y de reducir el coste computacional. Para abordar la primera tarea de generación de hipótesis, se proponen dos métodos complementarios basados respectivamente en el análisis de la apariencia y la geometría de la escena. Para ello resulta especialmente interesante el uso de un dominio transformado en el que se elimina la perspectiva de la imagen original, puesto que este dominio permite una búsqueda rápida dentro de la imagen y por tanto una generación eficiente de hipótesis de localización de los vehículos. Los candidatos finales se obtienen por medio de un marco colaborativo entre el dominio original y el dominio transformado. Para la verificación de hipótesis se adopta un método de aprendizaje supervisado. Así, se evalúan algunos de los métodos de extracción de características más populares y se proponen nuevos descriptores con arreglo al conocimiento de la apariencia de los vehículos. Para evaluar la efectividad en la tarea de clasificación de estos descriptores, y dado que no existen bases de datos públicas que se adapten al problema descrito, se ha generado una nueva base de datos sobre la que se han realizado pruebas masivas. Finalmente, se presenta una metodología para la fusión de los diferentes clasificadores y se plantea una discusión sobre las combinaciones que ofrecen los mejores resultados. El núcleo del marco propuesto está constituido por un método Bayesiano de seguimiento basado en filtros de partículas. Se plantean contribuciones en los tres elementos fundamentales de estos filtros: el algoritmo de inferencia, el modelo dinámico y el modelo de observación. En concreto, se propone el uso de un método de muestreo basado en MCMC que evita el elevado coste computacional de los filtros de partículas tradicionales y por consiguiente permite que el modelado conjunto de múltiples vehículos sea computacionalmente viable. Por otra parte, el dominio transformado mencionado anteriormente permite la definición de un modelo dinámico de velocidad constante ya que se preserva el movimiento suave de los vehículos en autopistas. Por último, se propone un modelo de observación que integra diferentes características. En particular, además de la apariencia de los vehículos, el modelo tiene en cuenta también toda la información recibida de los bloques de procesamiento previos. El método propuesto se ejecuta en tiempo real en un ordenador de propósito general y da unos resultados sobresalientes en comparación con los métodos tradicionales. ABSTRACT This thesis addresses on-road vehicle detection and tracking with a monocular vision system. This problem has attracted the attention of the automotive industry and the research community as it is the first step for driver assistance and collision avoidance systems and for eventual autonomous driving. Although many effort has been devoted to address it in recent years, no satisfactory solution has yet been devised and thus it is an active research issue. The main challenges for vision-based vehicle detection and tracking are the high variability among vehicles, the dynamically changing background due to camera motion and the real-time processing requirement. In this thesis, a unified approach using statistical methods is presented for vehicle detection and tracking that tackles these issues. The approach is divided into three primary tasks, i.e., vehicle hypothesis generation, hypothesis verification, and vehicle tracking, which are performed sequentially. Nevertheless, the exchange of information between processing blocks is fostered so that the maximum degree of adaptation to changes in the environment can be achieved and the computational cost is alleviated. Two complementary strategies are proposed to address the first task, i.e., hypothesis generation, based respectively on appearance and geometry analysis. To this end, the use of a rectified domain in which the perspective is removed from the original image is especially interesting, as it allows for fast image scanning and coarse hypothesis generation. The final vehicle candidates are produced using a collaborative framework between the original and the rectified domains. A supervised classification strategy is adopted for the verification of the hypothesized vehicle locations. In particular, state-of-the-art methods for feature extraction are evaluated and new descriptors are proposed by exploiting the knowledge on vehicle appearance. Due to the lack of appropriate public databases, a new database is generated and the classification performance of the descriptors is extensively tested on it. Finally, a methodology for the fusion of the different classifiers is presented and the best combinations are discussed. The core of the proposed approach is a Bayesian tracking framework using particle filters. Contributions are made on its three key elements: the inference algorithm, the dynamic model and the observation model. In particular, the use of a Markov chain Monte Carlo method is proposed for sampling, which circumvents the exponential complexity increase of traditional particle filters thus making joint multiple vehicle tracking affordable. On the other hand, the aforementioned rectified domain allows for the definition of a constant-velocity dynamic model since it preserves the smooth motion of vehicles in highways. Finally, a multiple-cue observation model is proposed that not only accounts for vehicle appearance but also integrates the available information from the analysis in the previous blocks. The proposed approach is proven to run near real-time in a general purpose PC and to deliver outstanding results compared to traditional methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quality assessment is a key factor for stereoscopic 3D video content as some observers are affected by visual discomfort in the eye when viewing 3D video, especially when combining positive and negative parallax with fast motion. In this paper, we propose techniques to assess objective quality related to motion and depth maps, which facilitate depth perception analysis. Subjective tests were carried out in order to understand the source of the problem. Motion is an important feature affecting 3D experience but also often the cause of visual discomfort. The automatic algorithm developed tries to quantify the impact on viewer experience when common cases of discomfort occur, such as high-motion sequences, scene changes with abrupt parallax changes, or complete absence of stereoscopy, with a goal of preventing the viewer from having a bad stereoscopic experience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aircraft tracking plays a key and important role in the Sense-and-Avoid system of Unmanned Aerial Vehicles (UAVs). This paper presents a novel robust visual tracking algorithm for UAVs in the midair to track an arbitrary aircraft at real-time frame rates, together with a unique evaluation system. This visual algorithm mainly consists of adaptive discriminative visual tracking method, Multiple-Instance (MI) learning approach, Multiple-Classifier (MC) voting mechanism and Multiple-Resolution (MR) representation strategy, that is called Adaptive M3 tracker, i.e. AM3. In this tracker, the importance of test sample has been integrated to improve the tracking stability, accuracy and real-time performances. The experimental results show that this algorithm is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant surrounding illumination, partial aircraft occlusion, blur motion, rapid pose variation and onboard mechanical vibration, low computation capacity and delayed information communication between UAVs and Ground Station (GS). To our best knowledge, this is the first work to present this tracker for solving online learning and tracking freewill aircraft/intruder in the UAVs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La medida de calidad de vídeo sigue siendo necesaria para definir los criterios que caracterizan una señal que cumpla los requisitos de visionado impuestos por el usuario. Las nuevas tecnologías, como el vídeo 3D estereoscópico o formatos más allá de la alta definición, imponen nuevos criterios que deben ser analizadas para obtener la mayor satisfacción posible del usuario. Entre los problemas detectados durante el desarrollo de esta tesis doctoral se han determinado fenómenos que afectan a distintas fases de la cadena de producción audiovisual y tipo de contenido variado. En primer lugar, el proceso de generación de contenidos debe encontrarse controlado mediante parámetros que eviten que se produzca el disconfort visual y, consecuentemente, fatiga visual, especialmente en lo relativo a contenidos de 3D estereoscópico, tanto de animación como de acción real. Por otro lado, la medida de calidad relativa a la fase de compresión de vídeo emplea métricas que en ocasiones no se encuentran adaptadas a la percepción del usuario. El empleo de modelos psicovisuales y diagramas de atención visual permitirían ponderar las áreas de la imagen de manera que se preste mayor importancia a los píxeles que el usuario enfocará con mayor probabilidad. Estos dos bloques se relacionan a través de la definición del término saliencia. Saliencia es la capacidad del sistema visual para caracterizar una imagen visualizada ponderando las áreas que más atractivas resultan al ojo humano. La saliencia en generación de contenidos estereoscópicos se refiere principalmente a la profundidad simulada mediante la ilusión óptica, medida en términos de distancia del objeto virtual al ojo humano. Sin embargo, en vídeo bidimensional, la saliencia no se basa en la profundidad, sino en otros elementos adicionales, como el movimiento, el nivel de detalle, la posición de los píxeles o la aparición de caras, que serán los factores básicos que compondrán el modelo de atención visual desarrollado. Con el objetivo de detectar las características de una secuencia de vídeo estereoscópico que, con mayor probabilidad, pueden generar disconfort visual, se consultó la extensa literatura relativa a este tema y se realizaron unas pruebas subjetivas preliminares con usuarios. De esta forma, se llegó a la conclusión de que se producía disconfort en los casos en que se producía un cambio abrupto en la distribución de profundidades simuladas de la imagen, aparte de otras degradaciones como la denominada “violación de ventana”. A través de nuevas pruebas subjetivas centradas en analizar estos efectos con diferentes distribuciones de profundidades, se trataron de concretar los parámetros que definían esta imagen. Los resultados de las pruebas demuestran que los cambios abruptos en imágenes se producen en entornos con movimientos y disparidades negativas elevadas que producen interferencias en los procesos de acomodación y vergencia del ojo humano, así como una necesidad en el aumento de los tiempos de enfoque del cristalino. En la mejora de las métricas de calidad a través de modelos que se adaptan al sistema visual humano, se realizaron también pruebas subjetivas que ayudaron a determinar la importancia de cada uno de los factores a la hora de enmascarar una determinada degradación. Los resultados demuestran una ligera mejora en los resultados obtenidos al aplicar máscaras de ponderación y atención visual, los cuales aproximan los parámetros de calidad objetiva a la respuesta del ojo humano. ABSTRACT Video quality assessment is still a necessary tool for defining the criteria to characterize a signal with the viewing requirements imposed by the final user. New technologies, such as 3D stereoscopic video and formats of HD and beyond HD oblige to develop new analysis of video features for obtaining the highest user’s satisfaction. Among the problems detected during the process of this doctoral thesis, it has been determined that some phenomena affect to different phases in the audiovisual production chain, apart from the type of content. On first instance, the generation of contents process should be enough controlled through parameters that avoid the occurrence of visual discomfort in observer’s eye, and consequently, visual fatigue. It is especially necessary controlling sequences of stereoscopic 3D, with both animation and live-action contents. On the other hand, video quality assessment, related to compression processes, should be improved because some objective metrics are adapted to user’s perception. The use of psychovisual models and visual attention diagrams allow the weighting of image regions of interest, giving more importance to the areas which the user will focus most probably. These two work fields are related together through the definition of the term saliency. Saliency is the capacity of human visual system for characterizing an image, highlighting the areas which result more attractive to the human eye. Saliency in generation of 3DTV contents refers mainly to the simulated depth of the optic illusion, i.e. the distance from the virtual object to the human eye. On the other hand, saliency is not based on virtual depth, but on other features, such as motion, level of detail, position of pixels in the frame or face detection, which are the basic features that are part of the developed visual attention model, as demonstrated with tests. Extensive literature involving visual comfort assessment was looked up, and the development of new preliminary subjective assessment with users was performed, in order to detect the features that increase the probability of discomfort to occur. With this methodology, the conclusions drawn confirmed that one common source of visual discomfort was when an abrupt change of disparity happened in video transitions, apart from other degradations, such as window violation. New quality assessment was performed to quantify the distribution of disparities over different sequences. The results confirmed that abrupt changes in negative parallax environment produce accommodation-vergence mismatches derived from the increasing time for human crystalline to focus the virtual objects. On the other side, for developing metrics that adapt to human visual system, additional subjective tests were developed to determine the importance of each factor, which masks a concrete distortion. Results demonstrated slight improvement after applying visual attention to objective metrics. This process of weighing pixels approximates the quality results to human eye’s response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human visual system is able to effortlessly integrate local features to form our rich perception of patterns, despite the fact that visual information is discretely sampled by the retina and cortex. By using a novel perturbation technique, we show that the mechanisms by which features are integrated into coherent percepts are scale-invariant and nonlinear (phase and contrast polarity independent). They appear to operate by assigning position labels or “place tags” to each feature. Specifically, in the first series of experiments, we show that the positional tolerance of these place tags in foveal, and peripheral vision is about half the separation of the features, suggesting that the neural mechanisms that bind features into forms are quite robust to topographical jitter. In the second series of experiment, we asked how many stimulus samples are required for pattern identification by human and ideal observers. In human foveal vision, only about half the features are needed for reliable pattern interpolation. In this regard, human vision is quite efficient (ratio of ideal to real ≈ 0.75). Peripheral vision, on the other hand is rather inefficient, requiring more features, suggesting that the stimulus may be relatively underrepresented at the stage of feature integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied patient PB, who, after an electric shock that led to vascular insufficiency, became virtually blind, although he retained a capacity to see colors consciously. For our psychophysical studies, we used a simplified version of the Land experiments [Land, E. (1974) Proc. R. Inst. G. B. 47, 23–58] to learn whether color constancy mechanisms are intact in him, which amounts to learning whether he can assign a constant color to a surface in spite of changes in the precise wavelength composition of the light reflected from that surface. We supplemented our psychophysical studies with imaging ones, using functional magnetic resonance, to learn something about the location of areas that are active in his brain when he perceives colors. The psychophysical results suggested that color constancy mechanisms are severely defective in PB and that his color vision is wavelength-based. The imaging results showed that, when he viewed and recognized colors, significant increases in activity were restricted mainly to V1-V2. We conclude that a partly defective color system operating on its own in a severely damaged brain is able to mediate a conscious experience of color in the virtually total absence of other visual abilities.