1000 resultados para Mort cerebral


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The optimal hemoglobin (Hgb) target after aneurysmal subarachnoid hemorrhage is not precisely known. We sought to examine the threshold of Hgb concentration associated with an increased risk of cerebral metabolic dysfunction in patients with poor-grade subarachnoid hemorrhage. METHODS: Twenty consecutive patients with poor-grade subarachnoid hemorrhage who underwent multimodality neuromonitoring (intracranial pressure, brain tissue oxygen tension, cerebral microdialysis) were studied prospectively. Brain tissue oxygen tension and extracellular lactate/pyruvate ratio were used as markers of cerebral metabolic dysfunction and the relationship between Hgb concentrations and the incidence of brain hypoxia (defined by a brain tissue oxygen tension <20 mm Hg) and cell energy dysfunction (defined by a lactate/pyruvate ratio >40) was analyzed. RESULTS: Compared with higher Hgb concentrations, a Hgb concentration <9 g/dL was associated with lower brain tissue oxygen tension (27.2 [interquartile range, 21.2 to 33.1] versus 19.9 [interquartile range, 7.1 to 33.1] mm Hg, P=0.02), higher lactate/pyruvate ratio (29 [interquartile range, 25 to 38] versus 36 [interquartile range, 26 to 59], P=0.16), and an increased incidence of brain hypoxia (21% versus 52%, P<0.01) and cell energy dysfunction (23% versus 43%, P=0.03). On multivariable analysis, a Hgb concentration <9 g/dL was associated with a higher risk of brain hypoxia (OR, 7.92; 95% CI, 2.32 to 27.09; P<0.01) and cell energy dysfunction (OR, 4.24; 95% CI, 1.33 to 13.55; P=0.02) after adjusting for cerebral perfusion pressure, central venous pressure, PaO(2)/FIO(2) ratio, and symptomatic vasospasm. CONCLUSIONS: A Hgb concentration <9 g/dL is associated with an increased incidence of brain hypoxia and cell energy dysfunction in patients with poor-grade subarachnoid hemorrhage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Leiomyosarcomas are rare malignant neoplasms. Intracranial metastases of this tumour are even less frequently observed and have mostly been described from uterine leiomyosarcomas. In this article, we describe the case of a single right frontal subcortical cerebral metastasis in a patient with a right triceps muscle leiomyosarcoma. A right-sided frontal craniotomy with macroscopically complete tumour removal was performed, followed by combined radio-chemotherapy. The patient died 10 months after the initial diagnosis of the intracranial metastasis due to systemic tumour progression, without any evidence of intracranial recurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebral and metaphyseal dysplasia, spasticity with cerebral calcifications, and strong predisposition to autoimmune diseases are the hallmarks of the genetic disorder spondyloenchondrodysplasia. We mapped a locus in five consanguineous families to chromosome 19p13 and identified mutations in ACP5, which encodes tartrate-resistant phosphatase (TRAP), in 14 affected individuals and showed that these mutations abolish enzyme function in the serum and cells of affected individuals. Phosphorylated osteopontin, a protein involved in bone reabsorption and in immune regulation, accumulates in serum, urine and cells cultured from TRAP-deficient individuals. Case-derived dendritic cells exhibit an altered cytokine profile and are more potent than matched control cells in stimulating allogeneic T cell proliferation in mixed lymphocyte reactions. These findings shed new light on the role of osteopontin and its regulation by TRAP in the pathogenesis of common autoimmune disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

« Remis au Département des manuscrits par M. Gossellin, le 19 octobre 1809. » — Au fol. 2 est la déclaration de Voltaire, reproduite en fac-similé en tête du tome III de Voltaire, Bibliographie de ses oeuvres, par G. Bengesco (Paris, 1889, in-8°) : « Je meurs en adorant Dieu, en aimant mes amis, en ne haïssant pas mes ennemis, en détestant la superstition. 1778, fév. Voltaire. »

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MAP5, a microtubule-associated protein characteristic of differentiating neurons, was studied in the developing visual cortex and corpus callosum of the cat. In juvenile cortical tissue, during the first month after birth, MAP5 is present as a protein doublet of molecular weights of 320 and 300 kDa, defined as MAP5a and MAP5b, respectively. MAP5a is the phosphorylated form. MAP5a decreases two weeks after birth and is no longer detectable at the beginning of the second postnatal month; MAP5b also decreases after the second postnatal week but more slowly and it is still present in the adult. In the corpus callosum only MAP5a is present between birth and the end of the first postnatal month. Afterwards only MAP5b is present but decreases in concentration more than 3-fold towards adulthood. Our immunocytochemical studies show MAP5 in somata, dendrites and axonal processes of cortical neurons. In adult tissue it is very prominent in pyramidal cells of layer V. In the corpus callosum MAP5 is present in axons at all ages. There is strong evidence that MAP5a is located in axons while MAP5b seems restricted to somata and dendrites until P28, but is found in callosal axons from P39 onwards. Biochemical experiments indicate that the state of phosphorylation of MAP5 influences its association with structural components. After high speed centrifugation of early postnatal brain tissue, MAP5a remains with pellet fractions while most MAP5b is soluble. In conclusion, phosphorylation of MAP5 may regulate (1) its intracellular distribution within axons and dendrites, and (2) its ability to interact with other subcellular components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: To investigate the effect of chronic hyperglycemia on cerebral microvascular remodeling using perfusion computed tomography. METHODS: We retrospectively identified 26 patients from our registry of 2453 patients who underwent a perfusion computed tomographic study and had their hemoglobin A1c (HbA1c) measured. These 26 patients were divided into 2 groups: those with HbA1c>6.5% (n=15) and those with HbA1c≤6.5% (n=11). Perfusion computed tomographic studies were processed using a delay-corrected, deconvolution-based software. Perfusion computed tomographic values were compared between the 2 patient groups, including mean transit time, which relates to the cerebral capillary architecture and length. RESULTS: Mean transit time values in the nonischemic cerebral hemisphere were significantly longer in the patients with HbA1c>6.5% (P=0.033), especially in the white matter (P=0.005). Significant correlation (R=0.469; P=0.016) between mean transit time and HbA1c level was observed. CONCLUSIONS: Our results from a small sample suggest that chronic hyperglycemia may be associated with cerebral microvascular remodeling in humans. Additional prospective studies with larger sample size are required to confirm this observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.