940 resultados para Mononuclear cell infiltration
Resumo:
The c-fms gene encodes the receptor for macrophage colony-stimulating factor (CSF-1). The gene is expressed selectively in the macrophage and trophoblast cell lineages. Previous studies have indicated that sequences in intron 2 control transcript elongation in tissue-specific and regulated expression of c-fms. In humans, an alternative promoter was implicated in expression of the gene in trophoblasts. We show that in mice, c-fms transcripts in trophoblasts initiate from multiple points within the 2-kilobase (kb) region flanking the first coding exon. A reporter gene construct containing 3.5 kb of 5' flanking sequence and the down-stream intron 2 directed expression of enhanced green fluorescent protein (EGFP) to both trophoblasts and macrophages. EGFP was detected in trophoblasts from the earliest stage of implantation examined at embryonic day 7.5. During embryonic development, EGFP highlighted the large numbers of c-fms-positive macrophages, including those that originate from the yolk sac. In adult mice, EGFP location Was consistent with known F4/80-positive macrophage populations, including Langerhans cells of the skin, and permitted convenient sorting of isolated tissue macrophages from disaggregated tissue. Expression of EGFP in transgenic mice was dependent on intron 2 as no lines with detectable EGFP expression were obtained where either all of intron 2 or a conserved enhancer element FIRE (the Fms intronic regulatory element) was removed. We have therefore defined the elements required to generate myeloid- and trophoblast-specific transgenes as well as a model system for the study of mononuclear phagocyte development and function. (C) 2003 by The American Society of Hematology.
Resumo:
The current RIKEN transcript set represents a significant proportion of the mouse transcriptome but transcripts expressed in the innate and acquired immune systems are poorly represented. In the present study we have assessed the complexity of the transcriptome expressed in mouse macrophages before and after treatment with lipopolysaccharide, a global regulator of macrophage gene expression, using existing RIKEN 19K arrays. By comparison to array profiles of other cells and tissues, we identify a large set of macrophage-enriched genes, many of which have obvious functions in endocytosis and phagocytosis. In addition, a significant number of LPS-inducible genes were identified. The data suggest that macrophages are a complex source of mRNA for transcriptome studies. To assess complexity and identify additional macrophage expressed genes, cDNA libraries were created from purified populations of macrophage and dendritic cells, a functionally related cell type. Sequence analysis revealed a high incidence of novel mRNAs within these cDNA libraries. These studies provide insights into the depths of transcriptional complexity still untapped amongst products of inducible genes, and identify macrophage and dendritic cell populations as a starting point for sampling the inducible mammalian transcriptome.
Resumo:
Regular exercise is known to be effective in the prevention and treatment of cardiovascular disease. Among the cardioprotectant mechanisms influenced by exercise, the endothelium is becoming recognised as a major target. Preservation of endothelial cell structure is vital for frictionless blood flow, prevention of macrophage and lipid infiltration and, ultimately, optimal vascular function. Exercise causes various kinds of mechanical, chemical and thermal stresses, and repeated exposure to these stresses may precondition the endothelial cell to future stresses through a number of different mechanisms. This review discusses stress-induced changes in endothelial cell morphology, biochemistry and components of platelet activation and cell adhesion that impact on endothelial cell structure. An enhanced understanding of the effects of exercise on the endothelial cell will assist in directing future research into the prevention of cardiovascular disease. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Cell deletion is a physiological process for the development and maintenance of tissue homeostasis in metazoa. This is mainly achieved by the induction of various forms of programmed cell death followed by the recognition and removal of the targeted cells by phagocytes. In this review, we will discuss cell deletion in relation to the development and function of the innate immune system, particularly of the mononuclear phagocyte system (MPS), its ontogeny and potential role in tissue remodeling in the embryo and adult. Ongoing studies are addressing the roles of professional phagocytes of the MPS and neighboring tissue cells in dying cell removal, and candidate molecules that might attract mononuclear phagocytes to the dying cells. The potential phagocyte must discriminate between living and dying cells; current concepts for this discrimination derive from the observation of newly exposed ligands on the dying cells and new evidence for direct inhibition of uptake by viable cells.
Resumo:
The mononuclear phagocyte system (MPS) has been defined as a family of cells comprising bone marrow progenitors, blood monocytes and tissue macrophages. Macrophages are a major cell population in most of the tissues in the body, and their numbers increase further in inflammation, wounding and malignancy. Their trophic roles for other cell types in development and homeostasis are becoming increasingly evident. The receptor for macrophage colony-stimulating factor (CSF-1R) is expressed in a large proportion of cells considered to be mononuclear phagocytes, including antigen-presenting dendritic cells, which can be considered a specialized adaptive state rather than a separate lineage. The unity of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, by the transdifferentiation and fusion of MPS cells with other cell types, and by evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. The concept of the MPS may have partly outlived its usefulness.
Resumo:
The infiltration and persistence of hematopoietic immune cells within the rheumatoid arthritis (RA) joint results in elevated levels of pro-inflammatory cytokines, increased reactive oxygen (ROS) and -nitrogen (RNS) species generation, that feeds a continuous self-perpetuating cycle of inflammation and destruction. Meanwhile, the controlled production of ROS is required for signaling within the normal physiological reaction to perceived "foreign matter" and for effective apoptosis. This review focuses on the signaling pathways responsible for the induction of the normal immune response and the contribution of ROS to this process. Evidence for defects in the ability of immune cells in RA to regulate the generation of ROS and the consequence for their immune function and for RA progression is considered. As the hypercellularity of the rheumatoid joint and the associated persistence of hematopoietic cells within the rheumatoid joint are symptomatic of unresponsiveness to apoptotic stimuli, the role of apoptotic signaling proteins (specifically Bcl-2 family members and the tumor suppressor p53) as regulators of ROS generation and apoptosis are considered, evaluating evidence for their aberrant expression and function in RA. We postulate that ROS generation is required for effective therapeutic intervention.
Resumo:
A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Transgenic BALB/c mice that express intrathyroidal human thyroid stimulating hormone receptor (TSHR) A-subunit, unlike wild-type (WT) littermates, develop thyroid lymphocytic infiltration and spreading to other thyroid autoantigens after T regulatory cell (Treg) depletion and immunization with human thyrotropin receptor (hTSHR) adenovirus. To determine if this process involves intramolecular epitope spreading, we studied antibody and T cell recognition of TSHR ectodomain peptides (A–Z). In transgenic and WT mice, regardless of Treg depletion, TSHR antibodies bound predominantly to N-terminal peptide A and much less to a few downstream peptides. After Treg depletion, splenocytes from WT mice responded to peptides C, D and J (all in the A-subunit), but transgenic splenocytes recognized only peptide D. Because CD4+ T cells are critical for thyroid lymphocytic infiltration, amino acid sequences of these peptides were examined for in silico binding to BALB/c major histocompatibility complex class II (IA–d). High affinity subsequences (inhibitory concentration of 50% < 50 nm) are present in peptides C and D (not J) of the hTSHR and mouse TSHR equivalents. These data probably explain why transgenic splenocytes do not recognize peptide J. Mouse TSHR mRNA levels are comparable in transgenic and WT thyroids, but only transgenics have human A-subunit mRNA. Transgenic mice can present mouse TSHR and human A-subunit-derived peptides. However, WT mice can present only mouse TSHR, and two to four amino acid species differences may preclude recognition by CD4+ T cells activated by hTSHR-adenovirus. Overall, thyroid lymphocytic infiltration in the transgenic mice is unrelated to epitopic spreading but involves human A-subunit peptides for recognition by T cells activated using the hTSHR.
Resumo:
Progression and severity of type 1 diabetes is dependent upon inflammatory induction of nitric oxide production and consequent pancreatic β-cell damage. Glucocorticoids (GCs) are highly effective anti-inflammatory agents but have been precluded in type 1 diabetes and in islet transplantation protocols because they exacerbated insulin resistance and suppressed β-cell insulin secretion at the high-doses employed clinically. In contrast, physiological-range elevation of GC action within β-cells ameliorated lipotoxic β-cell failure in transgenic mice overexpressing the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (MIP-HSD1tg/+ mice). Here, we tested the hypothesis that elevated β-cell 11beta-HSD1 protects against the β-cell destruction elicited by streptozotocin (STZ), a toxin that dose-dependently mimics aspects of inflammatory and autoimmune β-cell destruction. MIP-HSD1tg/+ mice exhibited an episodic protection from the severe hyperglycemia caused by a single high dose of STZ associated with higher and sustained β-cell survival, maintained β-cell replicative potential, higher plasma and islet insulin levels, reduced inflammatory macrophage infiltration and increased anti-inflammatory T regulatory cell content. MIP-HSD1tg/+ mice also completely resisted mild hyperglycemia and insulitis induced by multiple low-dose STZ administration. In vitro, MIP-HSD1tg/+ islets exhibited attenuated STZ-induced nitric oxide production, an effect reversed with a specific 11beta-HSD1 inhibitor. GC regeneration selectively within β-cells protects against inflammatory β-cell destruction, suggesting therapeutic targeting of 11beta-HSD1 may ameliorate processes that exacerbate type 1 diabetes and that hinder islet transplantation.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin–ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids. Various mutations were tested individually within each epitope and then in combination to isolate deimmunised α-sarcin variants that had the desired properties of silencing T cell epitopes and retention of the ability to inhibit protein synthesis (equivalent to wild-type, WT α-sarcin). A deimmunised variant (D9T/Q142T) demonstrated a complete lack of T cell activation in in vitro whole protein human T cell assays using peripheral blood mononuclear cells from donors with diverse HLA allotypes. Generation of an immunotoxin by fusion of the D9T/Q142T variant to a single-chain Fv targeting Her2 demonstrated potent cell killing equivalent to a fusion protein comprising the WT α-sarcin. These results represent the first fungal ribotoxin to be deimmunised with the potential to construct a new generation of deimmunised immunotoxin therapeutics.
Resumo:
Decellularized adipose tissue (DAT) is a promising biomaterial for soft tissue regeneration, and it provides a highly conducive microenvironment for human adipose-derived stem/stromal cell (ASC) attachment, proliferation, and adipogenesis. This thesis focused on developing techniques to fabricate 3-D bioscaffolds from enzymatically-digested DAT as platforms for ASC culture and delivery in adipose tissue engineering and large-scale ASC expansion. Initial work investigated chemically crosslinked microcarriers fabricated from pepsin-digested DAT as injectable adipo-inductive substrates for ASCs. DAT microcarriers highly supported ASC adipogenesis compared to gelatin microcarriers in a CELLSPIN system, as confirmed by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, lipid accumulation, and endpoint RT-PCR. ASCs cultured on DAT microcarriers in proliferation medium also had elevated PPARγ, C/EBPα, and LPL expression which suggested adipo-inductive properties. In vivo testing of the DAT microcarriers exhibited stable volume retention and enhanced cellular infiltration, tissue remodeling, and angiogenesis. Building from this work, non-chemically crosslinked porous foams and bead foams were fabricated from α-amylase-digested DAT for soft tissue regeneration. Foams were stable and strongly supported ASC adipogenesis based on GPDH activity and endpoint RT-PCR. PPARγ, C/EBPα, and LPL expression in ASCs cultured on the foams in proliferation media indicated adipo-inductive properties. Foams with Young’s moduli similar to human fat also influenced ASC adipogenesis by enhanced GPDH activity. In vivo adipogenesis accompanied by a potent angiogenic response and rapid resorption showed their potential use in wound healing applications. Finally, non-chemically crosslinked porous microcarriers synthesized from α-amylase-digested DAT were investigated for ASC expansion. DAT microcarriers remained stable in culture and supported significantly higher ASC proliferation compared to Cultispher-S microcarriers in a CELLSPIN system. ASC immunophenotype was preserved for all expanded groups, with reduced adhesion marker expression under dynamic conditions. DAT microcarrier expansion upregulated ASC expression of early adipogenic (PPARγ, LPL) and chondrogenic (COMP) markers without inducing a mature phenotype. DAT microcarrier expanded ASCs also showed similar levels of adipogenesis and osteogenesis compared to Cultispher-S despite a significantly higher population fold-change, and had the highest level of chondrogenesis among all groups. This study demonstrates the promising use of DAT microcarriers as a clinically relevant strategy for ASC expansion while maintaining multilineage differentiation capacity.
Resumo:
Leukemic B-chronic lymphoproliferative disorders (B-CLPDs) are generally believed to derive from a monoclonal B cell; biclonality has only occasionally been reported. In this study, we have explored the incidence of B-CLPD cases with 2 or more B-cell clones and established both the phenotypic differences between the coexisting clones and the clinicobiologic features of these patients. In total, 53 B-CLPD cases with 2 or more B-cell clones were studied. Presence of 2 or more B-cell clones was suspected by immunophenotype and confirmed by molecular/genetic techniques in leukemic samples (n = 42) and purified B-cell subpopulations (n = 10). Overall, 4.8% of 477 consecutive B-CLPDs had 2 or more B-cell clones, their incidence being especially higher among hairy cell leukemia (3 of 13), large cell lymphoma (2 of 10), and atypical chronic lymphocytic leukemia (CLL) (4 of 29). In most cases the 2 B-cell subsets displayed either different surface immunoglobulin (sIg) light chain (n = 37 of 53) or different levels of the same sIg (n = 9 of 53), usually associated with other phenotypic differences. Compared with monoclonal cases, B-CLL patients with 2 or more clones had lower white blood cell (WBC) and lymphocyte counts, more frequently displayed splenomegaly, and required early treatment. Among these, the cases in which a CLL clone coexisted with a non-CLL clone were older and more often displayed B symptoms, a monoclonal component, and diffuse infiltration of bone marrow and required early treatment more frequently than cases with monoclonal CLL or 2 CLL clones.
Resumo:
Despite its long record of successful use in human vaccines, the mechanisms underlying the immunomodulatory effects of alum are not fully understood. Alum is a potent inducer of interleukin-1 (IL-1) secretion in vitro in dendritic cells and macrophages via Nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome activation. However, the contribution of IL-1 to alum-induced innate and adaptive immune responses is controversial and the role of IL-1α following alum injection has not been addressed. This study shows that IL-1 is dispensable for alum-induced antibody and CD8 T cell responses to ovalbumin. However, IL-1 is essential for neutrophil infiltration into the injection site, while recruitment of inflammatory monocytes and eosinophils is IL-1 independent. Both IL-1α and IL-1β are released at the site of injection and contribute to the neutrophil response. Surprisingly, these effects are NLRP3-inflammasome independent as is the infiltration of other cell populations. However, while NLRP3 and caspase 1 were dispensable, alum-induced IL-1β at the injection site was dependent on the cysteine protease cathepsin S. Overall, these data demonstrate a previously unreported role for cathepsin S in IL-1β secretion, show that inflammasome formation is dispensable for alum-induced innate immunity and reveal that IL-1α and IL-1β are both necessary for alum-induced neutrophil influx in vivo.