950 resultados para Monitoring vibration systems
Resumo:
Wireless Sensor Networks (WSNs) are spearheading the efforts taken to build and deploy systems aiming to accomplish the ultimate objectives of the Internet of Things. Due to the sensors WSNs nodes are provided with, and to their ubiquity and pervasive capabilities, these networks become extremely suitable for many applications that so-called conventional cabled or wireless networks are unable to handle. One of these still underdeveloped applications is monitoring physical parameters on a person. This is an especially interesting application regarding their age or activity, for any detected hazardous parameter can be notified not only to the monitored person as a warning, but also to any third party that may be helpful under critical circumstances, such as relatives or healthcare centers. We propose a system built to monitor a sportsman/woman during a workout session or performing a sport-related indoor activity. Sensors have been deployed by means of several nodes acting as the nodes of a WSN, along with a semantic middleware development used for hardware complexity abstraction purposes. The data extracted from the environment, combined with the information obtained from the user, will compose the basis of the services that can be obtained.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 10 m. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. The statistical and spectral properties of the resulting observed waves are analyzed. Current improvements of the variational methods are discussed as future lines of research.
Resumo:
The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?? The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of ISC. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in ISC of about 14% on average in three different tests conducted at IESUPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
The deployment of home-based smart health services requires effective and reliable systems for personal and environmental data management. ooperation between Home Area Networks (HAN) and Body Area Networks (BAN) can provide smart systems with ad hoc reasoning information to support health care. This paper details the implementation of an architecture that integrates BAN, HAN and intelligent agents to manage physiological and environmental data to proactively detect risk situations at the digital home. The system monitors dynamic situations and timely adjusts its behavior to detect user risks concerning to health. Thus, this work provides a reasoning framework to infer appropriate solutions in cases of health risk episodes. Proposed smart health monitoring approach integrates complex reasoning according to home environment, user profile and physiological parameters defined by a scalable ontology. As a result, health care demands can be detected to activate adequate internal mechanisms and report public health services for requested actions.
Resumo:
This work introduces a web-based learning environment to facilitate learning in Project Management. The proposed web-based support system integrates methodological procedures and information systems, allowing to promote learning among geographically-dispersed students. Thus, students who are enrolled in different universities at different locations and attend their own project management courses, share a virtual experience in executing and managing projects. Specific support systems were used or developed to automatically collect information about student activities, making it possible to monitor the progress made on learning and assess learning performance as established in the defined rubric.
Resumo:
With the advent of cloud computing model, distributed caches have become the cornerstone for building scalable applications. Popular systems like Facebook [1] or Twitter use Memcached [5], a highly scalable distributed object cache, to speed up applications by avoiding database accesses. Distributed object caches assign objects to cache instances based on a hashing function, and objects are not moved from a cache instance to another unless more instances are added to the cache and objects are redistributed. This may lead to situations where some cache instances are overloaded when some of the objects they store are frequently accessed, while other cache instances are less frequently used. In this paper we propose a multi-resource load balancing algorithm for distributed cache systems. The algorithm aims at balancing both CPU and Memory resources among cache instances by redistributing stored data. Considering the possible conflict of balancing multiple resources at the same time, we give CPU and Memory resources weighted priorities based on the runtime load distributions. A scarcer resource is given a higher weight than a less scarce resource when load balancing. The system imbalance degree is evaluated based on monitoring information, and the utility load of a node, a unit for resource consumption. Besides, since continuous rebalance of the system may affect the QoS of applications utilizing the cache system, our data selection policy ensures that each data migration minimizes the system imbalance degree and hence, the total reconfiguration cost can be minimized. An extensive simulation is conducted to compare our policy with other policies. Our policy shows a significant improvement in time efficiency and decrease in reconfiguration cost.
Resumo:
The inherent complexity of modern cloud infrastructures has created the need for innovative monitoring approaches, as state-of-the-art solutions used for other large-scale environments do not address specific cloud features. Although cloud monitoring is nowadays an active research field, a comprehensive study covering all its aspects has not been presented yet. This paper provides a deep insight into cloud monitoring. It proposes a unified cloud monitoring taxonomy, based on which it defines a layered cloud monitoring architecture. To illustrate it, we have implemented GMonE, a general-purpose cloud monitoring tool which covers all aspects of cloud monitoring by specifically addressing the needs of modern cloud infrastructures. Furthermore, we have evaluated the performance, scalability and overhead of GMonE with Yahoo Cloud Serving Benchmark (YCSB), by using the OpenNebula cloud middleware on the Grid’5000 experimental testbed. The results of this evaluation demonstrate the benefits of our approach, surpassing the monitoring performance and capabilities of cloud monitoring alternatives such as those present in state-of-the-art systems such as Amazon EC2 and OpenNebula.
Resumo:
High-Performance Computing, Cloud computing and next-generation applications such e-Health or Smart Cities have dramatically increased the computational demand of Data Centers. The huge energy consumption, increasing levels of CO2 and the economic costs of these facilities represent a challenge for industry and researchers alike. Recent research trends propose the usage of holistic optimization techniques to jointly minimize Data Center computational and cooling costs from a multilevel perspective. This paper presents an analysis on the parameters needed to integrate the Data Center in a holistic optimization framework and leverages the usage of Cyber-Physical systems to gather workload, server and environmental data via software techniques and by deploying a non-intrusive Wireless Sensor Net- work (WSN). This solution tackles data sampling, retrieval and storage from a reconfigurable perspective, reducing the amount of data generated for optimization by a 68% without information loss, doubling the lifetime of the WSN nodes and allowing runtime energy minimization techniques in a real scenario.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.
Resumo:
The Smartcity Málaga project is one of Europe?s largest ecoefficient city initiatives. The project has implemented a field trial in 50 households to study the effects of energy monitoring and management technologies on the residential electricity consumption. This poster presents some lessons learned on energy consumption trends, smart clamps reliability and the suitability of power contracted by users, obtained after six months of data analysis.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.
Resumo:
Este trabajo es una contribución a los sistemas fotovoltaicos (FV) con seguimiento distribuido del punto de máxima potencia (DMPPT), una topología que se caracteriza porque lleva a cabo el MPPT a nivel de módulo, al contrario de las topologías más tradicionales que llevan a cabo el MPPT para un número más elevado de módulos, pudiendo ser hasta cientos de módulos. Las dos tecnologías DMPPT que existen en el mercado son conocidos como microinversores y optimizadores de potencia, y ofrecen ciertas ventajas sobre sistemas de MPPT central como: mayor producción en situaciones de mismatch, monitorización individual de cada módulo, flexibilidad de diseño, mayor seguridad del sistema, etc. Aunque los sistemas DMPPT no están limitados a los entornos urbanos, se ha enfatizado en el título ya que es su mercado natural, siendo difícil una justificación de su sobrecoste en grandes huertas solares en suelo. Desde el año 2010 el mercado de estos sistemas ha incrementado notablemente y sigue creciendo de una forma continuada. Sin embargo, todavía falta un conocimiento profundo de cómo funcionan estos sistemas, especialmente en el caso de los optimizadores de potencia, de las ganancias energéticas esperables en condiciones de mismatch y de las posibilidades avanzadas de diagnóstico de fallos. El principal objetivo de esta tesis es presentar un estudio completo de cómo funcionan los sistemas DMPPT, sus límites y sus ventajas, así como experimentos varios que verifican la teoría y el desarrollo de herramientas para valorar las ventajas de utilizar DMPPT en cada instalación. Las ecuaciones que modelan el funcionamiento de los sistemas FVs con optimizadores de potencia se han desarrollado y utilizado para resaltar los límites de los mismos a la hora de resolver ciertas situaciones de mismatch. Se presenta un estudio profundo sobre el efecto de las sombras en los sistemas FVs: en la curva I-V y en los algoritmos MPPT. Se han llevado a cabo experimentos sobre el funcionamiento de los algoritmos MPPT en situaciones de sombreado, señalando su ineficiencia en estas situaciones. Un análisis de la ventaja del uso de DMPPT frente a los puntos calientes es presentado y verificado. También se presenta un análisis sobre las posibles ganancias en potencia y energía con el uso de DMPPT en condiciones de sombreado y este también es verificado experimentalmente, así como un breve estudio de su viabilidad económica. Para ayudar a llevar a cabo todos los análisis y experimentos descritos previamente se han desarrollado una serie de herramientas software. Una siendo un programa en LabView para controlar un simulador solar y almacenar las medidas. También se ha desarrollado un programa que simula curvas I-V de módulos y generador FVs afectados por sombras y este se ha verificado experimentalmente. Este mismo programa se ha utilizado para desarrollar un programa todavía más completo que estima las pérdidas anuales y las ganancias obtenidas con DMPPT en instalaciones FVs afectadas por sombras. Finalmente, se han desarrollado y verificado unos algoritmos para diagnosticar fallos en sistemas FVs con DMPPT. Esta herramienta puede diagnosticar los siguientes fallos: sombras debido a objetos fijos (con estimación de la distancia al objeto), suciedad localizada, suciedad general, posible punto caliente, degradación de módulos y pérdidas en el cableado de DC. Además, alerta al usuario de las pérdidas producidas por cada fallo y no requiere del uso de sensores de irradiancia y temperatura. ABSTRACT This work is a contribution to photovoltaic (PV) systems with distributed maximum power point tracking (DMPPT), a system topology characterized by performing the MPPT at module level, instead of the more traditional topologies which perform MPPT for a larger number of modules. The two DMPPT technologies available at the moment are known as microinverters and power optimizers, also known as module level power electronics (MLPE), and they provide certain advantages over central MPPT systems like: higher energy production in mismatch situations, monitoring of each individual module, system design flexibility, higher system safety, etc. Although DMPPT is not limited to urban environments, it has been emphasized in the title as it is their natural market, since in large ground-mounted PV plants the extra cost is difficult to justify. Since 2010 MLPE have increased their market share steadily and continuing to grow steadily. However, there still lacks a profound understanding of how they work, especially in the case of power optimizers, the achievable energy gains with their use and the possibilities in failure diagnosis. The main objective of this thesis is to provide a complete understanding of DMPPT technologies: how they function, their limitations and their advantages. A series of equations used to model PV arrays with power optimizers have been derived and used to point out limitations in solving certain mismatch situation. Because one of the most emphasized benefits of DMPPT is their ability to mitigate shading losses, an extensive study on the effects of shadows on PV systems is presented; both on the I-V curve and on MPPT algorithms. Experimental tests have been performed on the MPPT algorithms of central inverters and MLPE, highlighting their inefficiency in I-V curves with local maxima. An analysis of the possible mitigation of hot-spots with DMPPT is discussed and experimentally verified. And a theoretical analysis of the possible power and energy gains is presented as well as experiments in real PV systems. A short economic analysis of the benefits of DMPPT has also been performed. In order to aide in the previous task, a program which simulates I-V curves under shaded conditions has been developed and experimentally verified. This same program has been used to develop a software tool especially designed for PV systems affected by shading, which estimates the losses due to shading and the energy gains obtained with DMPPT. Finally, a set of algorithms for diagnosing system faults in PV systems with DMPPT has been developed and experimentally verified. The tool can diagnose the following failures: fixed object shading (with distance estimation), localized dirt, generalized dirt, possible hot-spots, module degradation and excessive losses in DC cables. In addition, it alerts the user of the power losses produced by each failure and classifies the failures by their severity and it does not require the use of irradiance or temperature sensors.