880 resultados para Mode of delivery


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"July 1996."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Supported in part by Maternal and Child Health, Grant No. MCS-000252-16 and by contributions to Friends of Metabolic Research."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis presents an experimentally validated modelling study of the flow of combustion air in an industrial radiant tube burner (RTB). The RTB is used typically in industrial heat treating furnaces. The work has been initiated because of the need for improvements in burner lifetime and performance which are related to the fluid mechanics of the com busting flow, and a fundamental understanding of this is therefore necessary. To achieve this, a detailed three-dimensional Computational Fluid Dynamics (CFD) model has been used, validated with experimental air flow, temperature and flue gas measurements. Initially, the work programme is presented and the theory behind RTB design and operation in addition to the theory behind swirling flows and methane combustion. NOx reduction techniques are discussed and numerical modelling of combusting flows is detailed in this section. The importance of turbulence, radiation and combustion modelling is highlighted, as well as the numerical schemes that incorporate discretization, finite volume theory and convergence. The study first focuses on the combustion air flow and its delivery to the combustion zone. An isothermal computational model was developed to allow the examination of the flow characteristics as it enters the burner and progresses through the various sections prior to the discharge face in the combustion area. Important features identified include the air recuperator swirler coil, the step ring, the primary/secondary air splitting flame tube and the fuel nozzle. It was revealed that the effectiveness of the air recuperator swirler is significantly compromised by the need for a generous assembly tolerance. Also, there is a substantial circumferential flow maldistribution introduced by the swirier, but that this is effectively removed by the positioning of a ring constriction in the downstream passage. Computations using the k-ε turbulence model show good agreement with experimentally measured velocity profiles in the combustion zone and proved the use of the modelling strategy prior to the combustion study. Reasonable mesh independence was obtained with 200,000 nodes. Agreement was poorer with the RNG  k-ε and Reynolds Stress models. The study continues to address the combustion process itself and the heat transfer process internal to the RTB. A series of combustion and radiation model configurations were developed and the optimum combination of the Eddy Dissipation (ED) combustion model and the Discrete Transfer (DT) radiation model was used successfully to validate a burner experimental test. The previously cold flow validated k-ε turbulence model was used and reasonable mesh independence was obtained with 300,000 nodes. The combination showed good agreement with temperature measurements in the inner and outer walls of the burner, as well as with flue gas composition measured at the exhaust. The inner tube wall temperature predictions validated the experimental measurements in the largest portion of the thermocouple locations, highlighting a small flame bias to one side, although the model slightly over predicts the temperatures towards the downstream end of the inner tube. NOx emissions were initially over predicted, however, the use of a combustion flame temperature limiting subroutine allowed convergence to the experimental value of 451 ppmv. With the validated model, the effectiveness of certain RTB features identified previously is analysed, and an analysis of the energy transfers throughout the burner is presented, to identify the dominant mechanisms in each region. The optimum turbulence-combustion-radiation model selection was then the baseline for further model development. One of these models, an eccentrically positioned flame tube model highlights the failure mode of the RTB during long term operation. Other models were developed to address NOx reduction and improvement of the flame profile in the burner combustion zone. These included a modified fuel nozzle design, with 12 circular section fuel ports, which demonstrates a longer and more symmetric flame, although with limited success in NOx reduction. In addition, a zero bypass swirler coil model was developed that highlights the effect of the stronger swirling combustion flow. A reduced diameter and a 20 mm forward displaced flame tube model shows limited success in NOx reduction; although the latter demonstrated improvements in the discharge face heat distribution and improvements in the flame symmetry. Finally, Flue Gas Recirculation (FGR) modelling attempts indicate the difficulty of the application of this NOx reduction technique in the Wellman RTB. Recommendations for further work are made that include design mitigations for the fuel nozzle and further burner modelling is suggested to improve computational validation. The introduction of fuel staging is proposed, as well as a modification in the inner tube to enhance the effect of FGR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of ionisation on transdermal drug delivery using excised human epidermis (HS) and silastic rubber (SR) as model permeation barriers were investigated in vitro using Franz-type absorption cells. Suspensions and solutions of salicylic acid (SA), the model ionogenic permeant, were used as donors and the variables studied were vehicle pH and trans-membrane pH-gradients. For solutions, the pH effect was related to the level of ionisation of the drug and the degree of saturation of the solution. With suspensions, the observed permeation rate was unaffected by pH. The penetration profiles through HS and SR were similar, although the overall flux through HS was about 70% of that observed through SR. Pretreatment of the membranes with various enhancer regimens, including oleic acid, Azone and N, N-dimethylamides in propylene glycol (PG) and isopropyl myristate (IPM) promoted the penetration of SA. SR was not a suitable model for enhancer pretreatment using IPM as a vehicle as the membrane was significantly disrupted by this vehicle. The results from comparable experiments with and without a trans-membrane pH-gradient did not have a significant effect upon flux or flux enhancement after pretreatment with the above enhancers. A theoretical model for the extraction coefficients of weak acids was derived using the partition coefficients of the ionised and unionised species, pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. This model was shown to account for the variation in overall partition of salicylic acid dependent upon pH and pKa. The distribution of this solute between aqueous and oily phases, with and without added enhancer, was measured as a function of pH. The extraction coefficients determined were consistent with the model and showed that the behaviour of the system can be explained without referral to ion-pair mechanisms. Phosphonoacetate is an effective antiviral agent. However, as it is charged at physiological pH, its permeation across cell membranes is limited. To assess the improvement of the transport properties of this molecule, mono-, di- and tri-ester prodrugs were examined. These were assessed for stability and subsequent breakdown with respect to pH by HPLC. In vitro percutaneous absorption was observed using the triester, but not the ionic mono- or di-esters. The triester absorption could be potentiated using a range of enhancers with oleic acid being the most effective. Cyclodextrins (CD) have a role as absorption enhancers for peptide compounds across nasal epithelium. One potential mode of action is that CDs include these compounds, protect them from enzymic attack and thereby increase their residence time in the nasal epithelium. This study investigated the potential of CDs to protect ester prodrugs from enzymatic breakdown and prevent production of poorly transportable ionic species. Using a range of CD to ester molar ratios (10:1 to 2500:1) a small, but measurable, protection for the model esters (parabens) against esterase attack was observed. Possible mechanisms for this phenomenon are that CDs include the ester, making it unavailable for hydrolysis, the CDs may also affect the esterase in some way preventing access for the ester into the active site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SD Apo Lactoferrin-Tobramycin/Gentamicin Combinations are superior to monotherapy in the eradication of Pseudomonas aeruginosa Biofilm in the lungs Wilson Oguejiofor1, Lindsay J. Marshall1, Andrew J. Ingham1, Robert Price2, Jag. Shur2 1School of Life and Health Sciences, Aston University, Birmingham, UK. 2School of Pharmacy and Pharmacology, University of Bath, Bath, UK. KEYWORDS: lactoferrin, apo lactoferrin, spray drying, biofilm, cystic fibrosis Introduction Chronic lung infections from the opportunistic pathogeen Pseudomonas aeruginosa has been recognised as a major contributor to the incidences of high morbidity and mortality amongst cystic fibrosis (CF) patients (1,2). Currently, strategies for managing lung infections in CF patients involves the aggressive use of aerosolised antibiotics (3), however, increasing evidence suggests that the biofilm component of P. aeruginosa in the lower airway remains unperturbed and is associated with the development of antibiotic resistance. If this is so then, there is an urgent need to suitably adjust the current treatment strategy so that it includes compounds that prevent biofilm formation or disrupt established biofilms. It is well understood that biofilm formation is strongly dependent on iron (Fe3+) availability (4), therefore aerosolised anti-infective formulations which has the ability to chelate iron may essentially be a well suited therapy for eliminating P. aeruginosa biofilms on CF airway epithelial cells (5). In this study, we report the use of combination therapy; an aminoglycosides (tobramycin and gentamicin) and an antimicrobial peptide (lactoferrin) to significantly deplete P. aeruginosa biofilms. We demonstrate that lactoferrin-tobramycin and lactoferrin-gentamicin combinations are superior to the single antibiotic regime currently being employed to combat P. aeruginosa biofilms. MATERIALS AND METHOD Antibiotics: The antibiotics used in this study included gentamicin and tobramycin supplied by Fagron, UK. Bacterial strain and growth conditions: Pseudomonas aeruginosa strain PAO1 was provided by Prof. Peter Lambert of Aston University, Birmingham UK. The Strains were routinely grown from storage in a medium supplemented with magnesium chloride, glucose and casamino acids. Dialysis of lactoferrin: Apo lactoferrin was prepared by dialyzing a suspension of lactoferrin for 24 hrs at 4 °C against 20 mmol/L sodium dihydrogen phosphate, 20 mmol/L sodium acetate and 40 mmol/L EDTA (pH 3.5). Ferric ion (Fe3+) removal was verified by atomic absorption spectroscopy measurements. Spray drying of combinations of lactoferrin and apo lactoferrin with the different aminoglycosides: Combinations of tobramycin and gentamicin with the different preparations of lactoferrin were spray dried (SD) as a 2% (w/v) aqueous suspension. The spray drying parameters utilized for the production of suitable micron-sized particles includes: Inlet temperature, 180°C, spray flow rate, 606 L/hr; pump setting, 10%; aspirator setting, 85% (34m3/hr) to produce various outlet temperatures ranging from 99 - 106°C. Viability assay: To test the bactericidal activity of the various combinations, a viability assay was performed as previously described by Xu, Xiong et al. (6) with some modifications. Briefly, 10µL of ~ c. 6.6 x 107 CFU mL-1 P. aeruginosa strain PAO1 suspension were incubated (37°C, 60 mins) with 90 µL of a 2 µg/mL concentration of the various combinations and sampled every 10 mins. After incubation, the cells were diluted in deionised water and plated in Mueller hinton agar plates. Following 24 h incubation of the plates at 37°C, the percentage of viable cells was determined relative to incubation without added antibiotics. Biofilm assay: To test the susceptibility of the P. aeruginosa strain to various antibiotics in the biofilms mode of growth, overnight cultures of P. aeruginosa were diluted 1:100 into fresh medium supplemented with magnesium chloride, glucose and casamino acids. Aliquots of the dilution were dispensed into a 96 well dish and incubated (37°C, 24 h). Excess broth was removed and the number of colony forming units per milliliter (CFU/mL) of the planktonic bacteria was quantified. The biofilms were then washed and stained with 0.1% (w/v) crystal violet for 15 mins at room temperature. Following vigorous washing with water, the stained biofilms were solubilized in 30% acetic acid and the absorbance at 550nm of a 125 µL aliquot was determined in a microplate reader (Multiskan spectrum, Thermo Scientific) using 30% acetic acid in water as the blank. Aliquots of the broth prior to staining were used as an indicator of the level of planktonic growth. RESULTS AND DISCUSSION Following spray drying, the mean yield, volume weighted mean diameter and moisture content of lactoferrin powder were measured and were as follows (Table 1 and table 2); Table 1: Spray drying parameters FormulationInlet temp (°C)Outlet temp (°C)Airflow rate (L/hr)Mean yield (%)Moisture content (%) SD Lactoferrin18099 - 10060645.2 ±2.75.9 ±0.4 SD Apo Lactoferrin180100 - 10260657.8 ±1.85.7 ±0.2 Tobramycin180102 - 10460682.1 ±2.23.2 ±0.4 Lactoferrin + Tobramycin180104 - 10660687.5 ±1.43.7 ±0.2 Apo Lactoferrin + Tobramycin180103 - 10460676.3 ±2.43.3 ±0.5 Gentamicin18099 - 10260685.4 ±1.34.0 ±0.2 Lactoferrin + Gentamicin180102 - 10460687.3 ±2.13.9 ±0.3 Apo Lactoferrin + Gentamicin18099 -10360680.1±1.93.4 ±0.4 Table 2: Particle size distribution d10 d50d90 SD Lactoferrin1.384.9111.08 SD Apo Lactoferrin1.284.7911.04 SD Tobramycin1.254.9011.29 SD Lactoferrin + Tobramycin1.175.2715.23 SD Apo Lactoferrin + Tobramycin1.115.0614.31 SD Gentamicin1.406.0614.38 SD Lactoferrin + Gentamicin1.476.2314.41 SD Apo Lactoferrin + Gentamicin1.465.1511.53 The bactericidal activity of the various combinations were tested against P. aeruginosa PAO1 following a 60 minute incubation period (Figure 1 and Figure 2). While 2 µg/mL of a 1:1 combination of spray dried apo lactoferrin and Gentamicin was able to completely kill all bacterial cells within 40 mins, the same concentration was not as effective for the other antibiotic combinations. However, there was an overall reduction of bacterial cells by over 3 log units by the other combinations within 60 mins. Figure 1: Logarithmic plot of bacterial cell viability of various combinations of tobramycin and lactoferrin preparations at 2µg/mL (n = 3). Figure 2: Logarithmic plot of bacterial cell viability of various combinations of gentamicin and lactoferrin preparations at 2µg/mL (n = 3). Crystal violet staining showed that biofilm formation by P. aeruginosa PAO1 was significantly (ANOVA, p < 0.05) inhibited in the presence of the different lactoferrin preparations. Interestingly, apo lactoferrin and spray dried lactoferrin exhibited greater inhibition of both biofilm formation and biofilm persistence (Figure 2). Figure 2: Crystal violet staining of residual biofilms of P. aeruginosa following a 24hr incubation with the various combinations of antibiotics and an exposure to 48 hr formed biofilms. CONCLUSION In conclusion, combination therapy comprising of an antimicrobial peptide (lactoferrin) and an aminoglycosides (tobramycin or gentamicin) provides a feasible and alternative approach to monotherapy since the various combinations are more efficient than the respective monotherapy in the eradication of both planktonic and biofilms of P. aeruginosa. ACKNOWLEDGEMENT The authors would like to thank Mr. John Swarbrick and Friesland Campina for their generous donation of the Lactoferrin. REFERENCES 1.Hassett, D.J., Sutton, M.D., Schurr, M.J., Herr, A.B., Caldwell, C.C. and Matu, J.O. (2009), "Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways". Trends in Microbiology, 17, 130-138. 2.Trust, C.F. (2009), "Antibiotic treatment for cystic fibrosis". Report of the UK Cystic Fibrosis Trust Antibiotic Working Group. Consensus document. London: Cystic Fibrosis Trust. 3.Garcia-Contreras, L. and Hickey, A.J. (2002), "Pharmaceutical and biotechnological aerosols for cystic fibrosis therapy". Advanced Drug Delivery Reviews, 54, 1491-1504. 4.O'May, C.Y., Sanderson, K., Roddam, L.F., Kirov, S.M. and Reid, D.W. (2009), "Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions". J Med Microbiol, 58, 765-773. 5.Reid, D.W., Carroll, V., O'May, C., Champion, A. and Kirov, S.M. (2007), "Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis". European Respiratory Journal, 30, 286-292. 6.Xu, G., Xiong, W., Hu, Q., Zuo, P., Shao, B., Lan, F., Lu, X., Xu, Y. and Xiong, S. (2010), "Lactoferrin-derived peptides and Lactoferricin chimera inhibit virulence factor production and biofilm formation in Pseudomonas aeruginosa". J Appl Microbiol, 109, 1311-1318.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now stylized that the importance of foreign direct investment for developing countries and emerging markets arises from the impact of the presence of multinational corporations (MNCs) in the host country on the productivity of local firms, by way of technology diffusion and competition. There is also general agreement that the extent of technology transfer by an MNC to a developing country affiliate depends on the extent of its control on the local affiliate and that, in turn, the extent of this control depends on the mode of entry of the MNC into the host country. However, the existing literature is based on the experience of developed countries and as such does not contribute to the literature on development economics. This article addresses this lacuna using unique firm-level data from South Africa and Egypt. Our results indicate that the determinants of entry mode choice not only differ between developed and developing countries, but also among developing countries. They also bring into question the role of MNCs in fostering productivity growth in developing countries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral vaccines offer significant benefits due to the ease of administration, better patient compliance and non-invasive, needle-free administration. However, this route is marred by the harsh gastro intestinal environment which is detrimental to many vaccine formats. To address this, a range of delivery systems have been considered including bilosomes; these are bilayer vesicles constructed from non-ionic surfactants combined with the inclusion of bile salts which can stabilize the vesicles in the gastro intestinal tract by preventing membrane destabilization. The aim of this study was to investigate the effect of formulation parameters on bilosome carriers using Design of Experiments to select an appropriate formulation to assess in vivo. Bilosomes were constructed from monopalmitoylglycerol, cholesterol, dicetyl phosphate and sodium deoxycholate at different blends ratios. The optimized bilosome formulation was identified and the potential of this formulation as an oral vaccine delivery system were assessed in biodistribution and vaccine efficacy studies. Results showed that the larger bilosomes vesicles (~6 µm versus 2 µm in diameter) increased uptake within the Peyer's patches and were able to reduce median temperature differential change and promote a reduction in viral cell load in an influenza challenge study. © 2013 Informa UK, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate numerically and experimentally the properties of a passively mode locked quantum dot semiconductor laser under the influence of cw optical injection. We demonstrate that the waveform instability at high pumping for these devices can be overcome when one mode of the device is locked to the injected master laser and additionally show spectral narrowing and tunability. Experimental and numerical analyses demonstrate that the stable locking boundaries are similar to these obtained for optical injection in CW lasers. © 2010 American Institute of Physics.