883 resultados para Mitochondrial Dna
Resumo:
9 p.
Resumo:
The main focus of this thesis is the use of high-throughput sequencing technologies in functional genomics (in particular in the form of ChIP-seq, chromatin immunoprecipitation coupled with sequencing, and RNA-seq) and the study of the structure and regulation of transcriptomes. Some parts of it are of a more methodological nature while others describe the application of these functional genomic tools to address various biological problems. A significant part of the research presented here was conducted as part of the ENCODE (ENCyclopedia Of DNA Elements) Project.
The first part of the thesis focuses on the structure and diversity of the human transcriptome. Chapter 1 contains an analysis of the diversity of the human polyadenylated transcriptome based on RNA-seq data generated for the ENCODE Project. Chapter 2 presents a simulation-based examination of the performance of some of the most popular computational tools used to assemble and quantify transcriptomes. Chapter 3 includes a study of variation in gene expression, alternative splicing and allelic expression bias on the single-cell level and on a genome-wide scale in human lymphoblastoid cells; it also brings forward a number of critical to the practice of single-cell RNA-seq measurements methodological considerations.
The second part presents several studies applying functional genomic tools to the study of the regulatory biology of organellar genomes, primarily in mammals but also in plants. Chapter 5 contains an analysis of the occupancy of the human mitochondrial genome by TFAM, an important structural and regulatory protein in mitochondria, using ChIP-seq. In Chapter 6, the mitochondrial DNA occupancy of the TFB2M transcriptional regulator, the MTERF termination factor, and the mitochondrial RNA and DNA polymerases is characterized. Chapter 7 consists of an investigation into the curious phenomenon of the physical association of nuclear transcription factors with mitochondrial DNA, based on the diverse collections of transcription factor ChIP-seq datasets generated by the ENCODE, mouseENCODE and modENCODE consortia. In Chapter 8 this line of research is further extended to existing publicly available ChIP-seq datasets in plants and their mitochondrial and plastid genomes.
The third part is dedicated to the analytical and experimental practice of ChIP-seq. As part of the ENCODE Project, a set of metrics for assessing the quality of ChIP-seq experiments was developed, and the results of this activity are presented in Chapter 9. These metrics were later used to carry out a global analysis of ChIP-seq quality in the published literature (Chapter 10). In Chapter 11, the development and initial application of an automated robotic ChIP-seq (in which these metrics also played a major role) is presented.
The fourth part presents the results of some additional projects the author has been involved in, including the study of the role of the Piwi protein in the transcriptional regulation of transposon expression in Drosophila (Chapter 12), and the use of single-cell RNA-seq to characterize the heterogeneity of gene expression during cellular reprogramming (Chapter 13).
The last part of the thesis provides a review of the results of the ENCODE Project and the interpretation of the complexity of the biochemical activity exhibited by mammalian genomes that they have revealed (Chapters 15 and 16), an overview of the expected in the near future technical developments and their impact on the field of functional genomics (Chapter 14), and a discussion of some so far insufficiently explored research areas, the future study of which will, in the opinion of the author, provide deep insights into many fundamental but not yet completely answered questions about the transcriptional biology of eukaryotes and its regulation.
Resumo:
The Barton laboratory has established that octahedral rhodium complexes bearing the sterically expansive 5,6-chrysene diimine ligand can target thermodynamically destabilized sites, such as base pair mismatches, in DNA with high affinity and selectivity. These complexes approach DNA from the minor groove, ejecting the mismatched base pairs from the duplex in a binding mode termed metalloinsertion. In recent years, we have shown that these metalloinsertor complexes also exhibit cytotoxicity preferentially in cancer cells that are deficient in the mismatch repair (MMR) machinery.
Here, we establish that a sensitive structure-activity relationship exists for rhodium metalloinsertors. We studied the relationship between the chemical structures of metalloinsertors and their effect on biological activity for ten complexes with similar DNA binding affinities, but wide variation in their lipophilicity. Drastic differences were observed in the selectivities of the complexes for MMR-deficient cells. Compounds with hydrophilic ligands were highly selective, exhibiting preferential cytotoxicity in MMR-deficient cells at low concentrations and short incubation periods, whereas complexes with lipophilic ligands displayed poor cell-selectivity. It was discovered that all of the complexes localized to the nucleus in concentrations sufficient for mismatch binding; however, highly lipophilic complexes also exhibited high mitochondrial uptake. Significantly, these results support the notion that mitochondrial DNA is not the desired target for our metalloinsertor complexes; instead, selectivity stems from targeting mismatches in genomic DNA.
We have also explored the potential for metalloinsertors to be developed into more complex structures with multiple functionalities that could either enhance their overall potency or impart mismatch selectivity onto other therapeutic cargo. We have constructed a family of bifunctional metalloinsertor conjugates incorporating cis-platinum, each unique in its chemical structure, DNA binding interactions, and biological activity. The study of these complexes in MMR-deficient cells has established that the cell-selective biological activity of rhodium metalloinsertors proceeds through a critical cellular pathway leading to necrosis.
We further explored the underlying mechanisms surrounding the biological response to mismatch recognition by metalloinsertors in the genome. Immunofluorescence assays of MMR-deficient and MMR-proficient cells revealed that a critical biomarker for DNA damage, phosphorylation of histone H2AX (γH2AX) rapidly accumulates in response to metalloinsertor treatment, signifying the induction of double strand breaks in the genome. Significantly, we have discovered that our metalloinsertor complexes selectively inhibit transcription in MMR-deficient cells, which may be a crucial checkpoint in the eventual breakdown of the cell via necrosis. Additionally, preliminary in vivo studies have revealed the capability of these compounds to traverse the complex environments of multicellular organisms and accumulate in MMR-deficient tumors. Our ever-increasing understanding of metalloinsertors, as well as the development of new generations of complexes both monofunctional and bifunctional, enables their continued progress into the clinic as promising new chemotherapeutic agents.
Resumo:
Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.
The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.
RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.
Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.
RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.
In the early cleavage stages the light polysomes are mostly affected by actinomycin.
Resumo:
Background: In the present study we have assessed whether the Carpathian Mountains represent a genetic barrier in East Europe. Therefore, we have analyzed the mtDNA of 128 native individuals of Romania: 62 of them from the North of Romania, and 66 from South Romania. Results: We have analyzed their mtDNA variability in the context of other European and Near Eastern populations through multivariate analyses. The results show that regarding the mtDNA haplogroup and haplotype distributions the Romanian groups living outside the Carpathian range (South Romania) displayed some degree of genetic differentiation compared to those living within the Carpahian range (North Romania). Conclusion: The main differentiation between the mtDNA variability of the groups from North and South Romania can be attributed to the demographic movements from East to West (prehistoric or historic) that differently affected in these regions, suggesting that the Carpathian mountain range represents a weak genetic barrier in South-East Europe.
Resumo:
A chegada dos primeiros habitantes há cerca de 15.000 anos e de colonos portugueses e escravos africanos, desde o século 15, em sucessivas migrações na América do Sul, levaram à formação de populações miscigenadas com raízes consideravelmente diversificadas. É notável a heterogeneidade populacional decorrente dessas migrações e do processo de amalgamento de indígenas a partir dos contatos entre os diferentes grupos étnicos, iniciados com a colonização da América pelos europeus. A despeito da elevada miscigenação, ainda se pode encontrar no Brasil populações que, majoritariamente, mantém a identidade genética dos seus ancestrais mais remotos. O objetivo desse estudo foi caracterizar a ancestralidade da população de Santa Isabel do Rio Negro, Amazonas, com fortes traços fenotípicos ameríndios, e da tribo indígena Terena de Mato Grosso do Sul. Para isto, foram estudados marcadores uniparentais paternos ligados à região não recombinante do cromossomo Y e maternos presentes na região controle do DNA mitocondrial (mtDNA). Em relação à herança paterna, foram genotipados 31 indivíduos de Santa Isabel do Rio Negro, sendo que os Terena já haviam sido estudados sob este aspecto. Quanto ao mtDNA, foram estudados 76 indivíduos de ambos os sexos e 51 Indivíduos do sexo masculino de Santa Isabel do Rio Negro e dos Terena, respectivamente. A análise de marcadores Y-SNPs possibilitou a caracterização de 55% dos cromossomos Y dos indivíduos de Santa Isabel do Rio Negro como pertencentes ao haplogrupo Q1a3a*, característico de ameríndio. Através do mtDNA, foi verificado que o haplogrupo A é o mais frequente nas duas populações, com percentuais de 34% e 42% em Santa Isabel do Rio Negro e na tribo Terena, respectivamente, observando-se no tocante à ancestralidade materna a não ocorrência de diferenciação genética significativa entre as duas populações. Por outro lado, a análise do cromossomo Y revelou a ocorrência de distância genética significativa entre elas, o que pode ser resultante da diferença entre os tamanhos das amostras populacionais ou refletir diferenças entre rotas migratórias dos ameríndios anteriormente à colonização. Os resultados mostram ainda que os genomas mitocondriais autóctones foram melhor preservados, e que novos haplogrupos do cromossomo Y foram introduzidos recentemente na população ameríndia. É, portanto, possível concluir que a população de Santa Isabel do Rio Negro e a tribo indígena Terena apresentam um significativo grau de conservação da ancestralidade ameríndia, apesar do longo histórico de contato com europeus e africanos, os outros povos formadores da população brasileira.
Resumo:
Genetic analysis, using single locus probes for genomic DNA, revealed that the juvenile Atlantic salmon populations in the Rivers Leven, Rothay and Troutbeck were related but genetically distinct. This genetic differentiation is greater than might be expected (by comparison with other salmon populations in the UK) and it is recommended that no action is taken which might promote genetic exchange between the three rivers. Thus, future fisheries management practices should treat the salmon from each site as separate genetic stocks. It is unlikely that any attempts to encourage fish currently spawning in the River Leven (downstream of Windermere) to utilize the upper catchment will be successful. The faster growth rate of juvenile salmon in the River Leven, compared with the River Rothay, probably results from a difference in temperature between the inflowing streams and the main outflow of Windermere. Precocious sexual maturation of some male parr was found in all three populations but the incidence (13-33%) is well within the range reported for other waters. Because of their enhanced growth rate, it is likely that some of the precocious males in the River Leven were 0+ fish. A very high incidence of hybridization (>18%) between Atlantic salmon and brown/sea trout was found in Troutbeck but not in the other rivers. Mitochondrial DNA analysis of these hybrids revealed them to be the product of several, independent cross-fertilizations involving both sexes of both species. The implications of this finding are discussed in relation to the availability of suitable spawning sites in Troutbeck.
Resumo:
Crassostrea (Sacco, 1897) é o gênero mais importante do mundo de ostras de cultivo e consiste de 34 espécies distribuídas pelas regiões tropicais e temperadas do globo. C. gasar e C. rhizophorae são as duas espécies nativas que estão distribuídas ao longo de toda a costa do Brasil até o Caribe. C. gasar também ocorre na costa da Africa. Ainda que sua distribuição seja extensa e com disponibilidade abundante, o cultivo de ostras nativas no Brasil ainda é incipiente e a delimitação correta dos estoques mantém-se incerta. O sucesso do desenvolvimento da malacocultura, que é recomendada internacionalmente como forma sustentável de aquicultura, depende da resolução desses problemas. Assim, com o objetivo de determinar geneticamente seus estoques no Atlântico como também estimar sua história demográfica, dois diferentes marcadores moleculares foram empregados: sequências de DNA da região controle mitocondrial e loci de microssatélites espécie-especifícos, desenvolvidos no presente estudo. Foram sequenciados fragmentos da região controle de um total de 930 indivíduos de C. gasar e C. rhizophorae coletados em 32 localidades que incluíram o Caribe, a Guiana Francesa, a costa brasileira e a África. Também foram realizadas genotipagens de 1178 indivíduos, e ambas as espécies, com 9 e 11 loci de microssatélites para C. gasar e C. rhizophorae, respectivamente. Os dados genéticos foram analisados através de diferentes abordagens (índices de estruturação (FST) e de (Jost D), análise molecular de variância (AMOVA), análise espacial molecular de variância (SAMOVA), Bayesian Skyline Plots (BSP), análise fatorial de correspondência (AFC) e análise de atribuição Bayesiana (STRUCTURE)). Os resultados indicaram um padrão geral de estruturação, onde dois diferentes estoques foram detectados para ambas as espécies: grupos do norte e do sul, onde o Rio de Janeiro seria a região limitante entre os dois estoques. Os maiores valores dos índices de estruturação foram encontrados para C. gasar, indicando que esta espécie estaria mais estruturada do que C. rhizophorae. As análises demográficas indicaram uma provável expansão das populações durante o ultimo período glacial e uma possível origem americana das populações africanas. Todos os resultados sugeriram a existência de uma barreira geográfica próxima ao Rio de Janeiro, que poderia ser a cadeia de Vitória-Trindade e o fenômeno de ressurgência que ocorre em Cabo Frio (RJ). Esses resultados serão de grande utilidade para estabelecer critérios para seleção de sementes para cultivo ao longo da costa do Brasil que permitirá o manejo adequado dos estoques ostreícolas, prevenindo seu desaparecimento como já ocorrido em outros recifes no mundo.
Resumo:
Genetic structure and average long-term connectivity and effective size of mutton snapper (Lutjanus analis) sampled from offshore localities in the U.S. Caribbean and the Florida Keys were assessed by using nuclear-encoded microsatellites and a fragment of mitochondrial DNA. No significant differences in allele, genotype (microsatellites), or haplotype (mtDNA) distributions were detected; tests of selective neutrality (mtDNA) were nonsignificant after Bonferroni correction. Heuristic estimates of average long-term rate of migration (proportion of migrant individuals/generation) between geographically adjacent localities varied from 0.0033 to 0.0054, indicating that local subpopulations could respond independently of environmental perturbations. Estimates of average longterm effective population sizes varied from 341 to 1066 and differed significantly among several of the localities. These results indicate that over time larval drift and interregional adult movement may not be sufficient to maintain population sustainability across the region and that there may be different demographic stocks at some of the localities studied. The estimate of long-term effective population size at the locality offshore of St. Croix was below the minimum threshold size considered necessary to maintain the equilibrium between the loss of adaptive genetic variance from genetic drift and its replacement by mutation. Genetic variability in mutton snapper likely is maintained at the intraregional level by aggregate spawning and random mating of local populations. This feature is perhaps ironic in that aggregate spawning also renders mutton snapper especially vulnerable to overexploitation.
Resumo:
The taxonomic status of Sebastes vulpes and S. zonatus were clarified by comprehensive genetic (amplif ied fragment length polymorphisms [AFLP] and mitochondrial DNA [mtDNA] variation) and morphological analyses on a total of 65 specimens collected from a single locality. A principal coordinate analysis based on 364 AFLP loci separated the specimens completely into two genetically distinct groups that corresponded to S. vulpes and S. zonatus according to body coloration and that indicated that they are reproductively isolated species. Significant morphological differences were also evident between the two groups; 1) separation by principal component analysis based on 31 measurements, and 2)separation according to differences in counts of gill rakers and dorsal-fin spines without basal scales, and in the frequencies of specimens with small scales on the lower jaw. Restriction of gene flow between the two groups was also indicated by the pairwise ΦST values estimated from variations in partial sequences from the mtDNA control region, although the minimum spanning network did not result in separation into distinct clades. The latter was likely due to incomplete lineage sorting between S. vulpes and S. zonatus owing to their recent speciation.
Resumo:
Evolutionary associations among the four North American species of menhadens (Brevoortia spp.) have not been thoroughly investigated. In the present study, classifications separating the four species into small-scaled and large-scaled groups were evaluated by using DNA data, and genetic associations within these groups were explored. Specifically, data from the nuclear genome (microsatellites) and the mitochondrial genome (mtDNA sequences) were used to elicit patterns of recent and historical evolutionary associations. Nuclear DNA data indicated limited contemporary gene flow among the species, and also indicated higher relatedness within the small-scaled and large-scaled menhadens than between these groups. Mitochondrial DNA sequences of the large-scaled menhadens indicated the presence of two ancestral lineages, one of which contained members of both species. This result may indicate genetic diver-gence (reproductive isolation) followed by secondary contact (hybridization) between these species. In contrast, a single ancestral lineage indicated incomplete genetic divergence between the small-scaled menhaden. These results are discussed in the context of the biology and demographics of each species.
Resumo:
The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the rivers Ebro, Tagus and Guadiana, suggesting that main watercourses in the Iberian Peninsula may act as semi-permeable barriers to gene flow in stone martens. To our knowledge, this is the first phylogeographic and population genetic study of the species at a broad regional scale. We also wanted to make the case for the importance and benefits of using and comparing multiple different clustering and multivariate methods in spatial genetic analyses of mobile and continuously distributed species.
Resumo:
Background: The European mink (Mustela lutreola, L. 1761) is a critically endangered mustelid, which inhabits several main river drainages in Europe. Here, we assess the genetic variation of existing populations of this species, including new sampling sites and additional molecular markers (newly developed microsatellite loci specific to European mink) as compared to previous studies. Probabilistic analyses were used to examine genetic structure within and between existing populations, and to infer phylogeographic processes and past demography. Results: According to both mitochondrial and nuclear microsatellite markers, Northeastern (Russia, Estonia and Belarus) and Southeastern (Romania) European populations showed the highest intraspecific diversity. In contrast, Western European (France and Spain) populations were the least polymorphic, featuring a unique mitochondrial DNA haplotype. The high differentiation values detected between Eastern and Western European populations could be the result of genetic drift in the latter due to population isolation and reduction. Genetic differences among populations were further supported by Bayesian clustering and two main groups were confirmed (Eastern vs. Western Europe) along with two contained subgroups at a more local scale (Northeastern vs. Southeastern Europe; France vs. Spain). Conclusions: Genetic data and performed analyses support a historical scenario of stable European mink populations, not affected by Quaternary climate oscillations in the Late Pleistocene, and posterior expansion events following river connections in both North-and Southeastern European populations. This suggests an eastern refuge during glacial maxima (as already proposed for boreal and continental species). In contrast, Western Europe was colonised more recently following either natural expansions or putative human introductions. Low levels of genetic diversity observed within each studied population suggest recent bottleneck events and stress the urgent need for conservation measures to counteract the demographic decline experienced by the European mink.
Resumo:
In the present study we have investigated the population genetic structure of albacore (Thunnus alalunga, Bonnaterre 1788) and assessed the loss of genetic diversity, likely due to overfishing, of albacore population in the North Atlantic Ocean. For this purpose, 1,331 individuals from 26 worldwide locations were analyzed by genotyping 75 novel nuclear SNPs. Our results indicated the existence of four genetically homogeneous populations delimited within the Mediterranean Sea, the Atlantic Ocean, the Indian Ocean and the Pacific Ocean. Current definition of stocks allows the sustainable management of albacore since no stock includes more than one genetic entity. In addition, short-and long-term effective population sizes were estimated for the North Atlantic Ocean albacore population, and results showed no historical decline for this population. Therefore, the genetic diversity and, consequently, the adaptive potential of this population have not been significantly affected by overfishing.
Resumo:
Biochemical (electrophoresis and mitochondrial DNA) and morphological analysis are important tools for the characterization of strains. Reference is made to studies conducted in the framework of the Genetic Improvement of Farmed Tilapias project to establish a new base tilapia population for culture purposes, describing the basic concepts of electrophoresis and morphometric analysis.