994 resultados para Microbial diversity -- North Pacific Ocean
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Pacific Ocean : compiled from Admiralty surveys & other official sources by the India-Rubber, Gutta-Percha & Telegraph Works Co. It was published by J.D. Potter in [1899]. Scale [ca. 1:15,000,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to a non-standard 'Mercator' projection with the central meridian at 170 degrees west. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. Note: The central meridian of this map is not the same as the Prime Meridian and may wrap the International Date Line or overlap itself when displayed in GIS software. This map shows features such as drainage, territorial boundaries, shoreline features, and more. Relief shown by hachures. Depths shown by soundings. Shows routes of Admiralty surveys. This layer is part of a selection of digitally scanned and georeferenced historic maps from the Harvard Map Collection and the Harvard University Library as part of the Open Collections Program at Harvard University project: Organizing Our World: Sponsored Exploration and Scientific Discovery in the Modern Age. Maps selected for the project correspond to various expeditions and represent a range of regions, originators, ground condition dates, scales, and purposes.
Trace element abundance, and Sr and Nd isotope ratios of dust samples in the Pacific Ocean (Table 2)
Resumo:
Eolian dust preserved in deep-sea sediment cores provides a valuable indicator of past atmospheric circulation and continental paleoclimate. In order to identify the provenance of eolian dust, Nd and Sr isotopic compositions and Rb, Sr and rare earth element (REE) concentrations have been determined for the silicate fractions of deep-sea sediments from the north and central Pacific Ocean. Different regions of the Pacific Ocean are characterized by distinct air-borne inputs, producing a large range in epsolin-Nd (-10 to +1), 87Sr/86Sr (0.705-0.721), La/Yb (5-15), EuN/EuN* (0.6-1.0) and Sr/Nd (4-33). The average Nd isotopic composition of Pacific deep-sea sediments (epsilon-Nd = -6), is more radiogenic than the average from the Atlantic (epsilon-Nd = -8). In contrast, the average147Sm/144Nd ratio for Pacific sediments (0.114) is identical to that of Atlantic sediments and to that of global average riverine suspended material. The values of epsilon-Nd and147Sm/144Nd are positively correlated for the Pacific samples but negatively correlated for Atlantic samples, reflecting a fundamental difference between the dominant components in the end members with radiogenic Nd (island-arc components in the Pacific and LREE-enriched intraplate ocean island components in the Atlantic). Samples from the north central Pacific have distinctive unradiogenic epsilon-Nd values of -10, 87Sr/86Sr > 0.715, high La/Yb (> 12), and low EuN/EuN* (0.6) and Sr/Nd (3-6). These data are virtually identical to the values for loess from Asia and endorse the use of these sediments as indicators of Asian paleoclimate and paleowind directions. Island-arc contributions appear to dominate in the northwest Pacific, resulting in higher epsilon Nd (-1 to +1) and lower 87Sr/86Sr (~ 0.705) and La/Yb (~ 5). Sediments from the eastern Pacific tend to have intermediate Sr and Nd isotopic compositions but regionally variable Sr/Nd and REE patterns; they appear to be derived from the west margin of the North and South American continents, rather than from Asia. Our results confirm that dust provenance can be constrained by isotopic and geochemical analyses, which will facilitate reconstructions of past atmospheric circulation and continental paleoclimate.
Resumo:
The neodymium isotopic composition of the silicate fraction of Holocene pelagic sediments from the North Pacific define two provinces: a central North Pacific province characterized by unradiogenic and remarkably homogeneous end (-10.2 +/- 0.5) and a narrow circum-Pacific marginal province characterized by more radiogenic and variable end (-4.2 +/- 3.8). The silicate fraction in the central North Pacific is exclusively eolian; based on prevailing wind patterns, meteorological data, and neodymium isotopic data, the only significant sediment source is Chinese loess. Leaching experiments on Chinese loess confirm that leachable Nd is isotopically indistinguishable from bulk and residual silicate Nd. Silicates in the circum-North Pacific marginal province comprise eolian loess, volcanic ash, and hemipelagic sediments derived from volcanic arcs. A compilation of Pacific seawater and Mn nodule epsilon-Nd data shows no clear spatial variation except for a general decrease from surface to deep waters from -3 to -4 and slightly lower epsilon-Nd in bottom waters along the western North Pacific due to the incursion of Antarctic Bottom Water. The relative homogeneity of bottom water epsilon-Nd, which contrasts sharply with the distinctive variation in sediment epsilon-Nd, plus the large difference between the average end of bottom waters and the central North Pacific eolian silicates (-4 vs. -10), suggests that any contribution of REE to seawater from eolian materials is insignificant. Furthermore, leaching of REE from eolian particles as they sink though the water column must be insignificant because Nd in shallow waters is more radiogenic than Nd in deeper waters. That there is no contrast in the Nd isotopic composition of bottom waters that overlie the central and marginal sediment provinces suggests that the ash and hemipelagic sediments derived from Pacific rim volcanic arcs also contribute minimal REE to seawater. The elimination of eolian, ash, and hemipelagic sediments leaves only near-shore riverine particulates as a possibly significant particulate source of REE to seawater.
Resumo:
Benthic and planktonic 14C ages are presented for the last glacial termination from marine sediment core VM21-30 from 617 m in the eastern equatorial Pacific. The benthic-planktonic 14C age differences in the core increased to more than 6000 years between Heinrich 1 time and the end of the Younger Dryas period. Several replicated 14C ages on different benthic and planktonic species from the same samples within the deglacial section of the core indicate a minimal amount of bioturbation. Scanning electron microscopy reveals no evidence of calcite alteration or contamination. The oxygen isotope stratigraphy of planktonic and benthic foraminifera does not indicate anomalously old (glacial age) values, and there is no evidence of a large negative stable carbon isotope excursion in benthic foraminifera that would indicate input of old carbon from dissociated methane. It appears, therefore, that the benthic 14C excursion in this core is not an artifact of diagenesis, bioturbation, or a pulse of methane. A benthic D14C stratigraphy reconstructed from the 14C ages from the deglacial section of VM21-30 appears to match that of Baja margin core MV99-MC19/GC31/PC08 (705 m), but the magnitude of the low-14C excursion is much larger in the VM21-30 record. This would seem to imply that the VM21-30 core was closer to the source of 14C-depleted waters during the deglaciation, but the source of this CO2 remains elusive.
Resumo:
Oxygen isotope data are compared with relative abundances of selected planktic foraminifera through a ca. 15 m interval at DSDP Site 593 (Tasman Sea, southwest Pacific, 40°S) in which there are prominent changes in population sizes, as well as several evolutionary events. We focus on the relation between faunal and climatic histories. The base of early Miocene oxygen isotope Zone Mi1b (uppermost planktic foraminiferal Zone N.6) is identified from closesampled (c. 14 kyr) isotope records of Globigerina woodi and Cibicides kullenbergi. Chronostratigraphic interpolations, using the first occurrences of Globorotalia praescitula, G. mimea and Praeorbulina curva give an age estimate of ca. 18.4 Ma (cf. 18.1 -18.3 Ma for the base of the zone at DSDP Site 608 (type level, north Atlantic, 43°N) ). Another significant benthic delta18O enrichment event, informally designated as the base of zone "Mi1c", is identified 10 m higher in the sequence at ca. 17.8 Ma. Populations of Globoquadriau dehiscens and Globigerinoides trilobus (inferred to be near the southern margin of their distributions) either reduced considerably or withdrew, particularly in the vicinity of zone "Mi1c". A bioseries linking Globorotalia incognita with G. zealandica developed following the benthic delta18O enrichment spike at the base of Zone Mi1b; the latter species became extinct (at least regionally) just above the base of zone "Mi1c". In contrast, the apparently opportunistic Globorotlia praescitula increased dramatically in abundance at this time; there were also transformations in its architecture, leading to the evolutionary appearance of G. miozea. While planktic foraminifera abundances often do not closely covary with the detailed isotope records and tend to be more stable through time, the near coincidence of evolutionary and biogeographic events with isotopic events suggests at least indirect adaptive responses to climatic changes. Early Miocene middle-latitude planktic foraminiferal evolution, biogeography, and biostratigraphy, may be intimately connected with climatic history.
Resumo:
The quantitative study of distribution and taxonomic composition of recent living and dead (without plasma) benthic foraminifers revealed three foraminiferal assemblages in bottom sediments of the Pacific Ocean at depths of 3350 to 4981 m. The assemblage dominated by epibenthic Lagenammina difflugiformis, Reophax dentaliniformis, and Saccorhiza ramose occupies slopes of underwater hills. The assemblage with a high share of infaunal Cribrostomoides subglobosum, C. nitidum, and Ammobaculites agglutinans is registered on an abyssal plateau. The assemblage with a significant proportion of large Astrorhiza and Reophax species, which are characterized by active way of life, populates gentle slopes and narrow depressions with potentially strong bottom currents.
Resumo:
Prof. H. H. W. Menard has brought together nearly all that was known of the Pacific geology in the early 1960s. His book contains a particular chapter on manganese nodules giving a stimulating review of the features and processes known to govern their distribution and chemical composition.