978 resultados para Micro structured heat exchanger
Resumo:
A theoretical analysis is presented to investigate fully developed (both thermally and hydrodynamically) forced convection in a duct of rectangular cross-section filled with a hyper-porous medium. The Darcy-Brinkman model for flow through porous media was adopted in the present analysis. A Fourier series type solution is applied to obtain the exact velocity and temperature distribution within the duct. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [1], is treated. Values of the Nusselt number and the friction factor as a function of the aspect ratio, the Darcy number, and the viscosity ratio are reported.
Resumo:
Colloidal PbS nanocrystals over-coated with CdS are prepared in aqueous solutions and exhibit strong photoluminescence with two distinct peaks in the visible regime. A photoluminescence peak is observed at 640 nm, which is attributed to the band edge recombination in the PbS nanocrystals, and another peak at 510 nm, which is above the band edge of the PbS nanocrystals. The two PL peaks are isolated by extracting separate species of nanocrystal based upon their surface morphology. Micro-emulsions of hexane:PVA are used to remove the species containing the PL peak at 640 nm from the solution, leaving a singular peak at 510 nm. We show conclusively that the double-peaked structure observed in the photoluminescence spectra of PbS nanocrystals over-coated with CdS is due to the presence of two distinctly different nanocrystal species.
Resumo:
Optically transparent, mesostructured titanium dioxide thin films were fabricated using an amphiphilic poly(alkylene oxide) block copolymer template in combination with retarded hydrolysis of a titanium isopropoxide precursor. Prior to calcination, the films displayed a stable hexagonal mesophase and high refractive indices (1.5 to 1.6) relative to mesostructured silica (1.43). After calcination, the hexagonal mesophase was retained with surface areas >300 m2 g-1. The dye Rhodamine 6G (commonly used as a laser dye) was incorporated into the copolymer micelle during the templating process. In this way, novel dye-doped mesostructured titanium dioxide films were synthesised. The copolymer not only directs the film structure, but also provides a solubilizing environment suitable for sustaining a high monomer-to-aggregate ratio at elevated dye concentrations. The dye-doped films displayed optical thresholdlike behaviour characteristic of amplified spontaneous emission. Soft lithography was successfully applied to micropattern the dye-doped films. These results pave the way for the fabrication and demonstration of novel microlaser structures and other active optical structures. This new, high-refractive index, mesostructured, dye-doped material could also find applications in areas such as optical coatings, displays and integrated photonic devices.
Resumo:
Heat transfer and entropy generation analysis of the thermally developing forced convection in a porous-saturated duct of rectangular cross-section, with walls maintained at a constant and uniform heat flux, is investigated based on the Brinkman flow model. The classical Galerkin method is used to obtain the fully developed velocity distribution. To solve the thermal energy equation, with the effects of viscous dissipation being included, the Extended Weighted Residuals Method (EWRM) is applied. The local (three dimensional) temperature field is solved by utilizing the Green’s function solution based on the EWRM where symbolic algebra is being used for convenience in presentation. Following the computation of the temperature field, expressions are presented for the local Nusselt number and the bulk temperature as a function of the dimensionless longitudinal coordinate, the aspect ratio, the Darcy number, the viscosity ratio, and the Brinkman number. With the velocity and temperature field being determined, the Second Law (of Thermodynamics) aspect of the problem is also investigated. Approximate closed form solutions are also presented for two limiting cases of MDa values. It is observed that decreasing the aspect ratio and MDa values increases the entropy generation rate.
Resumo:
Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.
Resumo:
A parametric study is carried out to investigate how geological inhomogeneity affects the pore-fluid convective flow field, the temperature distribution, and the mass concentration distribution in a fluid-saturated porous medium. The related numerical results have demonstrated that (1) the effects of both medium permeability inhomogeneity and medium thermal conductivity inhomogeneity are significant on the pore-fluid convective flow and the species concentration distribution in the porous medium; (2) the effect of medium thermal conductivity inhomogeneity is dramatic on the temperature distribution in the porous medium, but the effect of medium permeability inhomogeneity on the temperature distribution may be considerable, depending on the Rayleigh number involved in the analysis; (3) if the coupling effect between pore-fluid flow and mass transport is weak, the effect of the Lewis number is negligible on the pore-fluid convective flow and temperature distribution, hut it is significant on the species concentration distribution in the medium.
Resumo:
Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.
Resumo:
Monocrotaline is a pyrrolizidine alkaloid known to cause toxicity in humans and animals. Its mechanism of biological action is still unclear although DNA crosslinking has been suggested to a play a role in its activity. In this study we found that an active metabolite of monocrotaline, dehydromonocrotaline (DHM), alkylates guanines at the N7 position of DNA with a preference for 5'-GG and 5'-GA sequences; In addition, it generates piperidine- and heat-resistant multiple DNA crosslinks, as confirmed by electrophoresis and electron microscopy. On the basis of these findings, we propose that DHM undergoes rapid polymerization to a structure which is able to crosslink several fragments of DNA.
Resumo:
Importin alpha is the nuclear import receptor that recognizes classical monopartite and bipartite nuclear localization signals (NLSs). The structure of mouse importin alpha has been determined at 2.5 Angstrom resolution. The structure shows a large C-terminal domain containing armadillo repeats, and a less structured N-terminal importin beta-binding domain containing an internal NLS bound to the NLS-binding site. The structure explains the regulatory switch between the cytoplasmic, high-affinity form, and the nuclear, low-affinity form for NLS binding of the nuclear import receptor predicted by the current models of nuclear import. Importin beta conceivably converts the low- to high-affinity form by binding to a site overlapping the autoinhibitory sequence. The structure also has implications for understanding NLS recognition, and the structures of armadillo and HEAT repeats.
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The recently determined crystal structure of the PR65/A subunit of protein phosphatase 2A reveals the architecture of proteins containing HEAT repeats, The structural properties of this solenoid protein explain many functional characteristics and account for the involvement of solenoids as scaffold, anchoring and adaptor proteins.
Resumo:
The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.
Resumo:
Pulse-amplitude-modulation chlorophyll fluorometry was used to examine changes in dark-adapted F-v/F-m of endosymbiotic dinoflagellate microalgae within the tissues of the temperate coral Plesiastrea versipora exposed to elevated seawater temperature. The F-v/F-m was markedly reduced following exposure of corals to 28 degrees C for 48 h. When corals were returned to ambient (24 degrees C) conditions, F-v/F-m increased in an initial rapid and then secondary slower phase. Tissue discolouration (coral bleaching), caused by a significant decrease in the density of algae, was observed during the first 2-3 days of the recovery period. After 14 days, F-v/F-m was still significantly lower than in control corals. The recovery of F-v/F-m is discussed in terms of repair processes within the symbiotic algae, division of healthy algae and also the selective removal of photo-damaged dinoflagellates. Under field conditions, bleached corals sampled at Heron Island Reef during a bleaching event had significantly lower F-v/F-m than non-bleached colonies; four months after the bleaching event, there were no differences in F-v/F-m or algal density in corals marked as having bleached or having shown no signs of colour loss. The results of this laboratory and field study are consistent with the hypothesis that an impairment of photosynthesis occurs during heat-stress, and is the underlying cause of coral bleaching.
Resumo:
Many harvested marine and terrestrial populations have segments of their range protected in areas free from exploitation. Reasons for areas being protected from harvesting include conservation, tourism, research, protection of breeding grounds, stock recovery, harvest regulation, or habitat that is uneconomical to exploit. In this paper we consider the problem of optimally exploiting a single species local population that is connected by dispersing larvae to an unharvested local population. We define a spatially-explicit population dynamics model and apply dynamic optimization techniques to determine policies for harvesting the exploited patch. We then consider how reservation affects yield and spawning stock abundance when compared to policies that have not recognised the spatial structure of the metapopulation. Comparisons of harvest strategies between an exploited metapopulation with and without a harvest refuge are also made. Results show that in a 2 local population metapopulation with unidirectional larval transfer, the optimal exploitation of the harvested population should be conducted as if it were independent of the reserved population. Numerical examples suggest that relative source populations should be exploited if the objective is to maximise spawning stock abundance within a harvested metapopulation that includes a protected local population. However, this strategy can markedly reduce yield over a sink harvested reserve system and may require strict regulation for conservation goals to be realised. If exchange rates are high, results indicate that spawning stock abundance can be less in a reserve system than in a fully exploited metapopulation. In order to maximise economic gain in the reserve system, results indicate that relative sink populations should be harvested. Depending on transfer levels, loss in harvest through reservation can be minimal, and is likely to be compensated by the potential environmental and economic benefits of the reserve.