997 resultados para Metamorphic Core Complexes
Resumo:
In response to pathological stresses, the heart undergoes a remodelling process associated with cardiac hypertrophy. Since sustained hypertrophy can progress to heart failure, there is an intense investigation about the intracellular signalling pathways that control cardiomyocyte growth. Accumulating evidence has demonstrated that most stimuli known to initiate pathological changes associated with the development of cardiac hypertrophy activate G protein-coupled receptors (GPCRs) including the αl-adrenergic- (αl-AR), Angiotensin II- (AT-R) and endothelin-1- (ET-R) receptors. In this context, we have previously identified a cardiac scaffolding protein, called AKAP-Lbc (Α-kinase anchoring protein), with an intrinsic Rho specific guanine nucleotide exchange factor activity, that plays a key role in integrating and transducing hypertrophic signals initiated by these GPCRs (Appert-Collin, Cotecchia et al. 2007). Activated RhoA controls the transcriptional activation of genes involved in cardiomyocyte hypertrophy through signalling pathways that remain to be characterized. Here, we identified the nuclear factor-Kappa Β (NF-κΒ) activating kinase ΙΚΚβ as a novel AKAP-Lbc interacting protein. This raises the hypothesis that AKAP-Lbc might promote cardiomyocyte growth by maintaining a signalling complex that promotes the activation of the pro-hypertrophic transcription factor NF-κΒ. In fact, the activation of NF- κΒ-dependent transcription has been detected in numerous disease contexts, including hypertrophy, ischemia/reperfusion injury, myocardial infarction, allograft rejection, myocarditis, apoptosis, and more (Hall, Hasday et al. 2006). While it is known by more than a decade that NF-κΒ is a critical mediator of cardiac hypertrophy, it is currently poorly understood how pro-hypertrophic signals controlling NF-κΒ transcriptional activity are integrated and coordinated within cardiomyocytes. In this study, we show that AKAP-Lbc and ΙΚΚβ form a transduction complex in cardiomyocytes that couples activation of αl-ARs to NF-κB-mediated transcriptional reprogramming events associated with cardiomyocyte hypertrophy. In particular, we can show that activation of ΙΚΚβ within the AKAP-Lbc complex promotes NF-κB-dependent production of interleukine-6 (IL-6), which, in turn, enhances foetal gene expression. These findings indicate that the AKAP-Lbc/ΙΚΚβ complex is critical for selectively directing catecholamine signals to the induction of cardiomyocyte hypertrophy.
Resumo:
Hepatitis C virus (HCV) replicates its genome in a membrane-associated replication complex (RC). Specific membrane alterations, designated membranous webs, represent predominant sites of HCV RNA replication. The principles governing HCV RC and membranous web formation are poorly understood. Here, we used replicons harboring a green fluorescent protein (GFP) insertion in nonstructural protein 5A (NS5A) to study HCV RCs in live cells. Two distinct patterns of NS5A-GFP were observed. (i) Large structures, representing membranous webs, showed restricted motility, were stable over many hours, were partitioned among daughter cells during cell division, and displayed a static internal architecture without detectable exchange of NS5A-GFP. (ii) In contrast, small structures, presumably representing small RCs, showed fast, saltatory movements over long distances. Both populations were associated with endoplasmic reticulum (ER) tubules, but only small RCs showed ER-independent, microtubule (MT)-dependent transport. We suggest that this MT-dependent transport sustains two distinct RC populations, which are both required during the HCV life cycle.
Resumo:
This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.
Resumo:
Els esteroids juguen papers clau en el creixement I el desenvolupament d’eucariotes multicel•lulars. En plantes, aquestes hormones, anomenades Brassinosteroides (BRs), estan involucrades en una gran varietat de processos biològics essencials per a les plantes. S’han descrit anteriorment dos receptors de BRs del tipus Leucine Rich Repeat Receptor Like Kinase LRR-RLK, BRASSINOSTEROID RECEPTOR LIKE 1 i 3 (BRL1 i BRL3 respectivalemt) que són homòlegs al receptor principal BRI1 i són necessaris pel desenvolupament vascular. Tot i que els principals components de la senyal ja han estat identificats pel seu homòleg més pròxim, el receptor BRI1, els complexes de BRL1 i BRL3 juntament amb els candidats co-receptors així com els components de la ruta de senyalització encara no han sigut identificats. Per tal d’entendre millor la funció molecular d’aquests receptors de BRs en la planta aquesta tesis doctoral planteja dues aproximacions: com a primera aproximació, vaig realitzar un estudi fenotípic del desenvolupament del teixit vascular a la planta model Arabidopsis thaliana (Arabidopsis). Disposant d'una amplia bateria de mutants de síntesis de la hormona i senyalització del receptor BRI1, vam analitzar quantitativament el seu patró vascular a la tija d'Arabidopsis. Vam establir els paràmetres en les plantes silvestres [Col-0 wild type, (WT)] i els vam analitzar a tots i cadascun dels mutants. Això conjuntament amb una col•laboració amb la Dr. Marta Ibañes, física de la Universitat de Barcelona que va construir un model matemàtic per simular la formació del patró vascular ens va permetre el•laborar una hipòtesis que vam demostrar experimentalment i va ser publicada a la revista PNAS. Posteriorment vam observar que les plantes knock-out d'aquests dos receptors BRL1 y BRL3 a diferència de BRI1, no tenien cap fenotip obvi en el teixit vascular de la planta adulta. Així, a continuació, per entendre quina necessitat té la planta de disposar de tres receptors tant altament homòlegs que poden percebre la mateixa hormona, vam utilitzar una aproximació bioquímica en col•laboració amb el Prof. de Vries de la Universitat de Wageningen (Holanda) per tal de purificar els complexes dels receptors in vivo i els seus interactors. Això ens ha permès entendre millor el paper funcional d'aquests receptors en la planta. Els resultats d’aquests experiments estan resumits en un article en preparació que aviat estarà en revisió.
Resumo:
Ce texte est une introduction aux feuilletages par variétés complexes et aux problèmes d'uniformisation de tels feuilletages. Nous donnons en introduction une liste fondamentale de questions naturelles sur ces objets ainsi qu'un aperçcu des résultats connus.
Resumo:
The Himalayan orogen is the result of the collision between the Indian and Asian continents that began 55-50 Ma ago, causing intracontinental thrusting and nappe formation. Detailed mapping as well as structural and microfabric analyses on a traverse from the Tethyan Himalaya southwestward through the High Himalayan Crystalline and the Main Central Thrust zone (MCT zone) to the Lesser Himalayan Sequence in the Spiti-eastern Lahul-Parvati valley area reveal eight main phases of deformation, a series of late stage phases and five stages of metamorphic crystallization. This sequence of events is integrated into a reconstruction of the tectonometamorphic evolution of the Himalayan orogen in northern Himachal Pradesh. The oldest phase D-1 is preserved as relies in the High Himalayan Crystalline. Its deformational conditions are poorly known, but the metamorphic evolution is well documented by a prograde metamorphism reaching peak conditions within the upper amphibolite facies. This indicates that D-1 was an important tectonometamorphic event including considerable crustal thickening. The structural, metamorphic and sedimentary record suggest that D-1 most probably represents an early stage of continental collision. The first event clearly attributed to the collision between India and Asia is documented by two converging nappe systems, the NE-verging Shikar Beh Nappe and the SW-verging north Himalayan nappes. The D-2 Shikar Beh Nappe is characterized by isoclinal folding and top-to-the NE shearing, representing the main deformation in the High Himalayan Crystalline. D-2 also caused the main metamorphism in the High Himalayan Crystalline that was of a Barrovian-type, reaching upper amphibolite facies peak conditions. The Shikar Beh Nappe is interpreted to have formed within the Indian crust SW of the subduction zone. Simultaneously with NE-directed nappe formation, incipient subduction of India below Asia caused stacking of the SW-verging north Himalayan Nappes, that were thrust from the northern edge of the subducted continent toward the front of the Shikar Beh Nappe. As a result, the SW-verging folds of the D-3 Main Fold Zone formed in the Tethyan Himalaya below the front of the north Himalayan nappes. D-3 represents the main deformation in the Tethyan Himalaya, associated with a greenschist facies metamorphism. Folding within the Main Fold Zone subsequently propagated toward SW into the High Himalayan Crystalline, where it overprinted the preexisting D-2 structures. After subduction at the base of the north Himalayan nappes, the subduction zone stepped to the base of the High Himalayan Crystalline, where D-3 folds were crosscut by SW-directed D-4 thrusting. During D-4, the Crystalline Nappe, comprising the Main Fold Zone and relies of the Shikar Beh Nappe was thrust toward SW over the Lesser Himalayan Sequence along the 4 to 5 kms thick Main Central Thrust zone. Thrusting was related to a retrograde greenschist facies overprint at the base of the Crystalline Nappe and to pro-grade greenschist facies conditions in the Lesser Himalayan Sequence. Simultaneously with thrusting at the base of the Crystalline Nappe, higher crustal levels were affected by NE-directed D-5 normal extensional shearing and by dextral strike-slip motion, indicating that the high-grade metamorphic Crystalline Nappe was extruded between the low-grade metamorphic Lesser Himalayan Sequence at the base and the north Himalayan nappes at the top. The upper boundary of the Crystalline Nappe is not clearly delimited and passes gradually into the low-grade rocks at the front of the north Himalayan nappes. Extrusion of the Crystalline Nappe was followed by the phase D-6, characterized by large-scale, upright to steeply inclined, NE-verging folds and by another series of normal and extensional structures D-7+D-8 that may be related to ongoing extrusion of the Crystalline Nappe. The late stage evolution is represented by the phases D-A and D-B that indicate shortening parallel to the axis of the mountain chain and by D-C that is interpreted to account for the formation of large-scale domes with NNW-SSE-trending axes, an example of which is exposed in the Larji-Kullu-Rampur tectonic window.
Resumo:
The distinct core-to-rim zonation of different REEs in garnet in metamorphic rocks, specifically Sm relative to Lu, suggests that Sm-Nd and Lu-Hf isochron ages will record different times along a prograde garnet growth history. Therefore, REE zonations in garnet must be measured in order to correctly interpret the isochron ages in terms of the garnet growth interval, which could span several m.y. New REE profiles, garnet crystal size distributions, and garnet growth modeling, combined with previously published Sm-Nd and Lu-Hf geochronology on a UHP eclogite of the Zermatt-Saas Fee (ZSF) ophiolite, Lago di Cignana (Italy), demonstrate that prograde garnet growth of this sample occurred over a similar to 30 to 40 m.y. interval. Relative to peak metamorphism at 38 to 40 Ma, garnet growth is estimated to have begun at similar to 11 to 14 kbar pressure at similar to 70 to 80 Ma. Although such a protracted garnet growth interval is surprising, this is supported by plate tectonic reconstructions which suggest that subduction of the Liguro-Piemont ocean occurred through slow and oblique convergence. These results demonstrate that REE zonations in garnet, coupled to crystal size distributions, provide a powerful means for understanding prograde metamorphic paths when combined with Sm-Nd and Lu-Hf geochronology. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Data on new predictors of outcome include penumbra core or collaterals.Objective: To test the predictive value of recanalization, collaterals, penumbra and core of ischemia for functional outcome in a large group of patients with MCA occlusion. Method: Consecutive events included prospectively in the Acute Stroke Registry and Analysis of Lausanne from April 2002 to April 2009 with an acute stroke due to proximal MCA occlusion (M1) were considered for analysis. Acute CTA were reviewed to grade the collaterals (dichotomized in poor __50% or good _50% compared to the normal side) and localization of M1 occlusion (proximal or mid-distal). Acute CTP were reviewed and reconstructed to determine penumbra, core and stroke index (penumbra/penumbra_core) of brain ischemia. Good outcome was defined by mRS 0-2 at 3 months.Results: Among 242 events (115 male, mean NIHSS 18.1, SD 5.8, mean age 66, SD 15), 42% were treated with intravenous thrombolysis, and 3% with intraarterial thrombolysis. Collateral status was rated as poor in 53% of events and proximal M1 occlusion was present in 64%. Recanalization determined at 24 hours with CTA was complete in 26% events and partial/absent in 54%.CTP was available for 212 events. Mean penumbra was 88.6 cm3 (median 84.4, SD 53.8), mean core was 54.1 cm3 (median 46.2, SD 45.7) and stroke index was 64% (median 68%, SD 25%). Good outcome was observed in 87 events (36%) and was associated in multivariate logistic regression with thrombolysis (p_0.02, OR_2.5, 95% CI 1.2-5.4), recanalization (p_0.001, OR_4.1, 95% CI 1.9-8.9), lower NIHSS (p_0.001, OR_0.84, 95% CI 0.78-0.91), male gender (p_0.01, OR_2.8, 95% CI 1.3-5.9), mRS prior to stroke (p_0.02, OR_0.5, 95% CI 0.28-0.9) and good collateral status (p_0.005, OR_3, 95% CI 1.4-6.4). Nor penumbra, nor core, nor stroke index were significant in the multivariate model, even if an association was present in the univariate model between good functional outcome and penumbra (p_0.004, OR_1.008, 95% CI 1.003-1.01), core (p_0.001, OR_0.98, 95% CI 0.976-0.99) and strokeindex (p_0.001, OR_16.7, 95% CI 4.6 59.9).Conclusion: MCA recanalization is the best predictor for good functional outcome, followed by collateral status. CTP data did not predict the functional outcome in our large group of M1 occlusion. Author Disclosures: C. Odier: None. P. Michel: Research Grant; Significant; Paion, Lundbeck. Speakers; Modest; Boehringer-Ingelheim. Consultant/Advisory Board; Modest; Boehringer- Ingelheim. Consultant/Advisory Board; Significant; Servier, Lundbeck.
Resumo:
The chemical and isotopic compositions of clay minerals such as illite and chlorite are commonly used to quantify diagenetic and low-grade metamorphic conditions, an approach that is also used in the present study of the Monte Perdido thrust fault from the South Pyrenean fold-and-thrust belt. The Monte Perdido thrust fault is a shallow thrust juxtaposing upper Cretaceous-Paleocene platform carbonates and Lower Eocene marls and turbidites from the Jaca basin. The core zone of the fault, about 6 m thick, consists of intensely deformed clay-bearing rocks bounded by major shear surfaces. Illite and chlorite are the main hydrous minerals in the fault zone. Illite is oriented along cleavage planes while chlorite formed along shear veins (< 50 mu m in thickness). Authigenic chlorite provides essential information about the origin of fluids and their temperature. delta O-18 and delta D values of newly formed chlorite support equilibration with sedimentary interstitial water, directly derived from the local hanging wall and footwall during deformation. Given the absence of large-scale fluid flow, the mineralization observed in the thrust faults records the P-T conditions of thrust activity. Temperatures of chlorite formation of about 240A degrees C are obtained via two independent methods: chlorite compositional thermometers and oxygen isotope fractionation between cogenetic chlorite and quartz. Burial depth conditions of 7 km are determined for the Monte Perdido thrust reactivation, coupling calculated temperature and fluid inclusion isochores. The present study demonstrates that both isotopic and thermodynamic methods applied to clay minerals formed in thrust fault are useful to help constrain diagenetic and low-grade metamorphic conditions.
Resumo:
Møller-Plesset (MP2) and Becke-3-Lee-Yang-Parr (B3LYP) calculations have been used to compare the geometrical parameters, hydrogen-bonding properties, vibrational frequencies and relative energies for several X- and X+ hydrogen peroxide complexes. The geometries and interaction energies were corrected for the basis set superposition error (BSSE) in all the complexes (1-5), using the full counterpoise method, yielding small BSSE values for the 6-311 + G(3df,2p) basis set used. The interaction energies calculated ranged from medium to strong hydrogen-bonding systems (1-3) and strong electrostatic interactions (4 and 5). The molecular interactions have been characterized using the atoms in molecules theory (AIM), and by the analysis of the vibrational frequencies. The minima on the BSSE-counterpoise corrected potential-energy surface (PES) have been determined as described by S. Simón, M. Duran, and J. J. Dannenberg, and the results were compared with the uncorrected PES
Resumo:
The effect of basis set superposition error (BSSE) on molecular complexes is analyzed. The BSSE causes artificial delocalizations which modify the first order electron density. The mechanism of this effect is assessed for the hydrogen fluoride dimer with several basis sets. The BSSE-corrected first-order electron density is obtained using the chemical Hamiltonian approach versions of the Roothaan and Kohn-Sham equations. The corrected densities are compared to uncorrected densities based on the charge density critical points. Contour difference maps between BSSE-corrected and uncorrected densities on the molecular plane are also plotted to gain insight into the effects of BSSE correction on the electron density
Resumo:
Geometries, vibrational frequencies, and interaction energies of the CNH⋯O3 and HCCH⋯O3 complexes are calculated in a counterpoise-corrected (CP-corrected) potential-energy surface (PES) that corrects for the basis set superposition error (BSSE). Ab initio calculations are performed at the Hartree-Fock (HF) and second-order Møller-Plesset (MP2) levels, using the 6-31G(d,p) and D95++(d,p) basis sets. Interaction energies are presented including corrections for zero-point vibrational energy (ZPVE) and thermal correction to enthalpy at 298 K. The CP-corrected and conventional PES are compared; the unconnected PES obtained using the larger basis set including diffuse functions exhibits a double well shape, whereas use of the 6-31G(d,p) basis set leads to a flat single-well profile. The CP-corrected PES has always a multiple-well shape. In particular, it is shown that the CP-corrected PES using the smaller basis set is qualitatively analogous to that obtained with the larger basis sets, so the CP method becomes useful to correctly describe large systems, where the use of small basis sets may be necessary