991 resultados para Maturity Levels
Resumo:
During the winter of 1982-1983, a combination of high tides, higher than normal sea level and storm-induced waves were devastating to the coast of California. Damage estimates for public and private property destruction in the coastal counties of California totaled over $100,000,000. Much higher than average sea levels played a very important contributory role in the flooding damage. These unusually high sea levels were due to a combination of higher than normal mixed layer temperature associated with a strong, 2-year El Nino, storm surge due to low atmospheric pressure and persistent winds, and the cumulative effect of steady, "global" rise in relative sea level. Higher than average high tides coincided to an unusual extent with the peak sea levels reached during the numerous storms between November 1982 and March 1983. Important cyclical variations occur in California's mixed tide regime and the consequences of these on extreme tides have not been properly considered previously. In fact, erroneous "predictions" of much higher tides in the 1990's appearing in the popular press during the 1982-83 flooding, caused much public apprehension.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Examining secular changes in relative sea level along the U.S. west coast, we have identified strong tectonic signals. Tectonism exists not only on a coherent plate-wide scale (assuming a rigid plate approximation), but also on a sub-plate scale. In fact, differential tectonism between exotic or suspect geological terrain explains much of the spatial patterns of west coast tide-gauge data. Peltier's isostatic model appears not to explain the spatial pattern, implying glacio-isostatic adjustment is not the dominant contribution to the low-frequency signals. Eustatic effects cannot be identified unambiguously. These studies suggest several major questions/observations with regard to relative sea-level studies ...
Resumo:
We build on recent efforts to standardize maturation staging methods through the development of a field-proof macroscopic ovarian maturity index for Haddock (Melanogrammus aeglefinus) for studies on diel spawning periodicity. A comparison of field and histological observations helped us to improve the field index and methods, and provided useful insight into the reproductive biology of Haddock and other boreal determinate fecundity species. We found reasonable agreement between field and histological methods, except for the regressing and regenerating stages (however, differentiation of these 2 stages is the least important distinction for determination of maturity or reproductive dynamics). The staging of developing ovaries was problematic for both methods partly because of asynchronous oocyte hydration during the early stage of oocyte maturation. Although staging on the basis of histology in a laboratory is generally more accurate than macroscopic staging methods in the field, we found that field observations can uncover errors in laboratory staging that result from bias in sampling unrepresentative portions of ovaries. For 2 specimens, immature ovaries observed during histological examination were incorrectly assigned as regenerating during macroscopic staging. This type of error can lead to miscalculation of length at maturity and of spawning stock biomass, metrics that are used to characterize the state of a fish population. The revised field index includes 3 new macroscopic stages that represent final oocyte maturation in a batch of oocytes and were found to be reliable for staging spawning readiness in the field. The index was found to be suitable for studies of diel spawning periodicity and conforms to recent standardization guidelines.
Resumo:
The modern fishery for Tilefish (Lopholatilus chamaeleonticeps) developed during the 1970s, offshore of southern New England, in the western North Atlantic Ocean. The population quickly became over exploited, with documented declines in catch rates and changes in demographic traits. In an earlier study, median size at maturity (L50) of males declined from 62.6 to 38.6 cm fork length (FL) and median age at maturity (A50) of males declined from 7.1 to 4.6 years between 1978 and 1982. As part of a cooperative research effort to improve the data-limited Tilefish assessment, we updated maturity parameter estimates through the use of an otolith aging method and macroscopic and microscopic evaluations of gonads. The vital rates for this species have continued to change, particularly for males. By 2008, male L50 and A50 had largely rebounded, to 54.1 cm FL and 5.9 years. Changes in female reproductive schedules were less variable among years, but the smallest L50 and youngest A50 were recorded in 2008. Tilefish are dimorphic, where the largest fish are male, and male spawning success is postulated to be socially mediated. These traits may explain the initial rapid decline and the subsequent rebound in male L50 and A50 and less dramatic effects on females. Other factors that likely contribute to the dynamics of maturity parameter estimates are the relatively short period of overfishing and the amount of time since efforts to rebuild this fishery began, as measured in numbers of generations. This study also confirms the gonochoristic sexual pattern of the northern stock, and it reveals evidence of age truncation and relatively high proportions of immature Tilefish in the recent catch.
Resumo:
With the southern New England lobster fishery in distress, lobster fishermen have focused more effort toward harvesting channeled whelk (Busycotypus canaliculatus). However, minimal research has been conducted on the life history and growth rates of channeled whelk. Melongenid whelks generally grow slowly and mature late in life, a characteristic that can make them vulnerable to overfishing as fishing pressure increases. We sampled channeled whelk from Buzzards Bay, Massachusetts, in August 2010 and in July 2011, studied their gonad development by histology, and aged them by examining opercula. Males had a slower growth rate and a lower maximum size than females. Male whelk reached 50% maturity (SM50) at 115.5 mm shell length (SL) and at the age of 6.9 years. Female whelk reached SM50 at 155.3 mm SL and at the age of 8.6 years. With a minimum size limit of 69.9 mm (2.75 in) in shell width, males entered the fishery at 7.5 years, a few months after SM50, but females entered the fishery at 6.3 years, approximately 2 years before SM50. Increased fishing pressure combined with slow growth rates and the inability to reproduce before being harvested can easily constrain the long-term viability of the channeled whelk fishery in Massachusetts.