807 resultados para Mathematical representations
Resumo:
Successful motor performance requires the ability to adapt motor commands to task dynamics. A central question in movement neuroscience is how these dynamics are represented. Although it is widely assumed that dynamics (e.g., force fields) are represented in intrinsic, joint-based coordinates (Shadmehr R, Mussa-Ivaldi FA. J Neurosci 14: 3208-3224, 1994), recent evidence has questioned this proposal. Here we reexamine the representation of dynamics in two experiments. By testing generalization following changes in shoulder, elbow, or wrist configurations, the first experiment tested for extrinsic, intrinsic, or object-centered representations. No single coordinate frame accounted for the pattern of generalization. Rather, generalization patterns were better accounted for by a mixture of representations or by models that assumed local learning and graded, decaying generalization. A second experiment, in which we replicated the design of an influential study that had suggested encoding in intrinsic coordinates (Shadmehr and Mussa-Ivaldi 1994), yielded similar results. That is, we could not find evidence that dynamics are represented in a single coordinate system. Taken together, our experiments suggest that internal models do not employ a single coordinate system when generalizing and may well be represented as a mixture of coordinate systems, as a single system with local learning, or both.
Resumo:
A mathematical model of the transport of sedimented solids within a decanter centrifuge has been developed. The primary purpose of the model is to calculate the power, torque and axial force required for the scroll to transport the solids along the bowl. The model is presented in a non-dimensional form and the procedure for implementing the model is included. The model is compared to test data from an existing publication; there was good agreement between the model and data. Example results are presented in the form of graphs to illustrate the influence of key parameters. © 2013 Elsevier Ltd.
Resumo:
We present the Unified Form Language (UFL), which is a domain-specific language for representing weak formulations of partial differential equations with a view to numerical approximation. Features of UFL include support for variational forms and functionals, automatic differentiation of forms and expressions, arbitrary function space hierarchies formultifield problems, general differential operators and flexible tensor algebra. With these features, UFL has been used to effortlessly express finite element methods for complex systems of partial differential equations in near-mathematical notation, resulting in compact, intuitive and readable programs. We present in this work the language and its construction. An implementation of UFL is freely available as an open-source software library. The library generates abstract syntax tree representations of variational problems, which are used by other software libraries to generate concrete low-level implementations. Some application examples are presented and libraries that support UFL are highlighted. © 2014 ACM.
Resumo:
High dimensional biomimetic informatics (HDBI) is a novel theory of informatics developed in recent years. Its primary object of research is points in high dimensional Euclidean space, and its exploratory and resolving procedures are based on simple geometric computations. However, the mathematical descriptions and computing of geometric objects are inconvenient because of the characters of geometry. With the increase of the dimension and the multiformity of geometric objects, these descriptions are more complicated and prolix especially in high dimensional space. In this paper, we give some definitions and mathematical symbols, and discuss some symbolic computing methods in high dimensional space systematically from the viewpoint of HDBI. With these methods, some multi-variables problems in high dimensional space can be solved easily. Three detailed algorithms are presented as examples to show the efficiency of our symbolic computing methods: the algorithm for judging the center of a circle given three points on this circle, the algorithm for judging whether two points are on the same side of a hyperplane, and the algorithm for judging whether a point is in a simplex constructed by points in high dimensional space. Two experiments in blurred image restoration and uneven lighting image correction are presented for all these algorithms to show their good behaviors.
Resumo:
Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.
Resumo:
We calculate the in-medium nucleon-nucleon scattering cross sections from the G-matrix using the Dirac-Brueckner-Hartree-Fock (DBHF) approach. And we investigate the influence of the different representations of the G-matrix to the cross sections, the difference of which is mainly from the different effective masses.
Resumo:
A predictive and self-consistent mathematical model incorporating the electrochemical, chemical and ionic migration processes characterizing the propagation stage of crevice and pitting corrosion in metals is described. The model predicts the steady-state solution chemistry and electrode kinetics (and hence metal penetration rates) within an active corrosion cavity as a function of the many parameters on which these depend, such as external electrode potential and crevice dimensions. The crevice is modelled as a parallel-sided slot filled with a dilute sodium chloride solution. The cavity propagation rates are found to be faster in the case of a crevice with passive walls than one with active walls. The distribution of current over the internal surface of a crevice with corroding walls can be assessed using this model, giving an indication of the future shape of the cavity. The model is extended to include a solid hydroxide precipitation reaction and considers the effect of consequent changes in the chemical and physical environment within the crevice on the predicted corrosion rates. In this paper, the model is applied to crevice and pitting corrosion in carbon steel.