984 resultados para Mathematical optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Order picking consists in retrieving products from storage locations to satisfy independent orders from multiple customers. It is generally recognized as one of the most significant activities in a warehouse (Koster et al, 2007). In fact, order picking accounts up to 50% (Frazelle, 2001) or even 80% (Van den Berg, 1999) of the total warehouse operating costs. The critical issue in today’s business environment is to simultaneously reduce the cost and increase the speed of order picking. In this paper, we address the order picking process in one of the Portuguese largest companies in the grocery business. This problem was proposed at the 92nd European Study Group with Industry (ESGI92). In this setting, each operator steers a trolley on the shop floor in order to select items for multiple customers. The objective is to improve their grocery e-commerce and bring it up to the level of the best international practices. In particular, the company wants to improve the routing tasks in order to decrease distances. For this purpose, a mathematical model for a faster open shop picking was developed. In this paper, we describe the problem, our proposed solution as well as some preliminary results and conclusions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this talk, we discuss a scheduling problem that originated at TAP - Maintenance & Engineering - the maintenance, repair and overhaul organization of Portugal’s leading airline. In the repair process of aircrafts’ engines, the operations to be scheduled may be executed on a certain workstation by any processor of a given set, and the objective is to minimize the total weighted tardiness. A mixed integer linear programming formulation, based on the flexible job shop scheduling, is presented here, along with computational experiment on a real instance, provided by TAP-ME, from a regular working week. The model was also tested using benchmarking instances available in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering different market opportunities (bilateral negotiation, market sessions, and operation in different markets) and the negotiation context such as the peak and off-peak periods of the day, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors’ research group has developed a multi-agent system: MASCEM (Multi-Agent System for Competitive Electricity Markets), which simulates the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from the market context. However, it is still necessary to adequately optimize the player’s portfolio investment. For this purpose, this paper proposes a market portfolio optimization method, based on particle swarm optimization, which provides the best investment profile for a market player, considering the different markets the player is acting on in each moment, and depending on different contexts of negotiation, such as the peak and offpeak periods of the day, and the type of day (business day, weekend, holiday, etc.). The proposed approach is tested and validated using real electricity markets data from the Iberian operator – OMIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submitted in partial fulfillment for the Requirements for the Degree of PhD in Mathematics, in the Speciality of Statistics in the Faculdade de Ciências e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

European Journal of Operational Research, nº 73 (1994)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crescente expansão urbana e o incremento das exigências ambientais e financeiras promovem a implementação de abordagens sustentáveis para a gestão das infraestruturas sanitárias. Assim, o recurso a instrumentos de monitorização e à modelação matemática surge como o caminho para a racionalização do investimento e a otimização dos sistemas existentes. Neste contexto, a modelação dinâmica de sistemas de drenagem urbana assume relevância para o controlo e redução dos caudais em excesso e das descargas de poluentes nos meios recetores, resultantes de um incremento significativo de afluências pluviais indevidas, de problemas de sub-dimensionamento ou falta de operação e manutenção. O objetivo da presente dissertação consiste na modelação, calibração e diagnóstico do sistema intercetor de Lordelo utilizando o software Storm Water Management Model, através dos dados recolhidos a partir do projeto de Reabilitação dos intercetores de Lordelo, elaborado pela Noraqua. A modelação considera a avaliação das afluências de tempo seco e as afluências pluviais pelo software Sanitary Sewer Overflow Analysis and Planning Toolbox. Com efeito, a simulação dinâmica, permitiu um conhecimento mais detalhado do sistema, avaliando a capacidade hidráulica e localizando os pontos propícios a inundações. Assim, foi possível testar soluções de beneficiação do sistema, englobando a problemática das afluências pluviais indevidas calibradas. Apesar das dificuldades sentidas face à qualidade dos dados existentes, verificou-se que o SSOAP e o SWMM são ferramentas úteis na deteção, diagnóstico e redução dos caudais em excesso e que o procedimento utilizado pode ser aplicado a sistemas semelhantes, como forma de definir a melhor solução técnica e económica ao nível do planeamento, operação e reabilitação do sistema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to assess the influence in the diagnostic value for human hydatid disease of the composition of bovine hydatid cyst fluid (BHCF) obtained from fertile (FC) and non-fertile cysts (NFC). Eight batches from FC and 5 from NFC were prepared and analysed with respect to chemical composition: total protein, host-derived protein, carbohydrate and lipid contents. No differences were observed in the first two parameters but carbohydrate and lipid contents were shown to be higher in batches from FC than in those from NFC. Bands of 38 and 116 kD in SDS-PAGE profiles were observed to be present in BHCF from FC only. Two pools were prepared from BHCF batches obtained from FC (PFC) and NFC (PNFC), respectively. Antigen recognition patterns were analysed by immunoblot. Physicochemical conditions for adsorption of antigens to the polystyrene surface (ELISA plates) were optimized. The diagnostic value of both types of BHCF as well as the diagnostic relevance of oxidation of their carbohydrate moieties with periodate were assessed by ELISA using 42 serum samples from hydatid patients, 41 from patients with other disorders, and 15 from healthy donors. Reactivity of all sera against native antigen were tested with and without free phosphorylcholine. The best diagnostic efficiency was observed using BHCF from periodate-treated PFC using glycine buffer with strong ionic strength to coat ELISA plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In developed countries, civil infrastructures are one of the most significant investments of governments, corporations, and individuals. Among these, transportation infrastructures, including highways, bridges, airports, and ports, are of huge importance, both economical and social. Most developed countries have built a fairly complete network of highways to fit their needs. As a result, the required investment in building new highways has diminished during the last decade, and should be further reduced in the following years. On the other hand, significant structural deteriorations have been detected in transportation networks, and a huge investment is necessary to keep these infrastructures safe and serviceable. Due to the significant importance of bridges in the serviceability of highway networks, maintenance of these structures plays a major role. In this paper, recent progress in probabilistic maintenance and optimization strategies for deteriorating civil infrastructures with emphasis on bridges is summarized. A novel model including interaction between structural safety analysis,through the safety index, and visual inspections and non destructive tests, through the condition index, is presented. Single objective optimization techniques leading to maintenance strategies associated with minimum expected cumulative cost and acceptable levels of condition and safety are presented. Furthermore, multi-objective optimization is used to simultaneously consider several performance indicators such as safety, condition, and cumulative cost. Realistic examples of the application of some of these techniques and strategies are also presented.