951 resultados para Materials synthesis


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic-inorganic hybrid nanocomposites are widely studied and applied in broad areas because of their ability to combine the flexibility, low density of the organic materials with the hardness, strength, thermal stability, good optical and electronic properties of the inorganic materials. Polydimethylsiloxane (PDMS) due to its excellent elasticity, transparency, and biocompatibility has been extensively employed as the organic host matrix for nanocomposites. For the inorganic component, titanium dioxide and barium titanate are broadly explored as they possess outstanding physical, optical and electronic properties. In our experiment, PDMS-TiO2 and PDMS-BaTiO3 hybrid nanocomposites were fabricated based on in-situ sol-gel technique. By changing the amount of metal precursors, transparent and homogeneous PDMS-TiO2 and PDMS-BaTiO3 hybrid films with various compositions were obtained. Two structural models of these two types of hybrids were stated and verified by the results of characterization. The structures of the hybrid films were examined by a conjunction of FTIR and FTRaman. The morphologies of the cross-sectional areas of the films were characterized by FESEM. An Ellipsometer and an automatic capacitance meter were utilized to evaluate the refractive index and dielectric constant of these composites respectively. A simultaneous DSC/TGA instrument was applied to measure the thermal properties. For PDMS-TiO2 hybrids, the higher the ratio of titanium precursor added, the higher the refractive index and the dielectric constant of the composites are. The highest values achieved of refractive index and dielectric constant were 1.74 and 15.5 respectively for sample PDMS-TiO2 (1-6). However, when the ratio of titanium precursor to PDMS was as high as 20 to 1, phase separation occurred as evidenced by SEM images, refractive index and dielectric constant decreased. For PDMS-BaTiO3 hybrids, with the increase of barium and titanium precursors in the system, the refractive index and dielectric constant of the composites increased. The highest value was attained in sample PDMS-BaTiO3 (1-6) with a refractive index of 1.6 and a dielectric constant of 12.2. However, phase separation appeared in SEM images for sample PDMS-BaTiO3 (1-8), the refractive index and dielectric constant reduced to lower values. Different compositions of PDMS-TiO2 and PDMS-BaTiO3 hybrid films were annealed at 60 °C and 100 °C, the influences on the refractive index, dielectric constant, and thermal properties were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphene, which is a two-dimensional carbon material, exhibits unique properties that promise its potential applications in photovoltaic devices. Dye-sensitized solar cell (DSSC) is a representative of the third generation photovoltaic devices. Therefore, it is important to synthesize graphene with special structures, which possess excellent properties for dye-sensitized solar cells. This dissertation research was focused on (1) the effect of oxygen content on the structure of graphite oxide, (2) the stability of graphene oxide solution, (3) the application of graphene precipitate from graphene oxide solution as counter electrode for DSSCs, (4) the development of a novel synthesis method for the three-dimensional graphene with honeycomb-like structure, and (5) the exploration of honeycomb structured graphene (HSG) as counter electrodes for DSSCs. Graphite oxide is a crucial precursor to synthesize graphene sheets via chemical exfoliation method. The relationship between the oxygen content and the structures of graphite oxides was still not explored. In this research, the oxygen content of graphite oxide is tuned by changing the oxidation time and the effect of oxygen content on the structure of graphite oxide was evaluated. It has been found that the saturated ratio of oxygen to carbon is 0.47. The types of functional groups in graphite oxides, which are epoxy, hydroxyl, and carboxylgroups, are independent of oxygen content. However, the interplanar space and BET surface area of graphite oxide linearly increases with increasing O/C ratio. Graphene oxide (GO) can easily dissolve in water to form a stable homogeneous solution, which can be used to fabricate graphene films and graphene based composites. This work is the first research to evaluate the stability of graphene oxide solution. It has been found that the introduction of strong electrolytes (HCl, LiOH, LiCl) into GO solution can cause GO precipitation. This indicates that the electrostatic repulsion plays a critical role in stabilizing aqueous GO solution. Furthermore, the HCl-induced GO precipitation is a feasible approach to deposit GO sheets on a substrate as a Pt-free counter electrode for a dye-sensitized solar cell (DSSC), which exhibited 1.65% of power conversion efficiency. To explore broad and practical applications, large-scale synthesis with controllable integration of individual graphene sheets is essential. A novel strategy for the synthesis of graphene sheets with three-dimensional (3D) Honeycomb-like structure has been invented in this project based on a simple and novel chemical reaction (Li2O and CO to graphene and Li2CO3). The simultaneous formation of Li2CO3 with graphene not only can isolate graphene sheets from each other to prevent graphite formation during the process, but also determine the locally curved shape of graphene sheets. After removing Li2CO3, 3D graphene sheets with a honeycomb-like structure were obtained. This would be the first approach to synthesize 3D graphene sheets with a controllable shape. Furthermore, it has been demonstrated that the 3D Honeycomb-Structured Graphene (HSG) possesses excellent electrical conductivity and high catalytic activity. As a result, DSSCs with HSG counter electrodes exhibit energy conversion efficiency as high as 7.8%, which is comparable to that of an expensive noble Pt electrode.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis is reported of a new series of oligo(aryleneethynylene) (OAE) derivatives of up to ca. 6 nm in molecular length (OAE9) using iterative Pd-mediated Sonogashira cross-coupling methodology. The oligo-p-phenyleneethynylene cores of the molecular wires are functionalized at both termini with pyridyl units for attachment to gold leads. The molecular structures determined by single-crystal X-ray analysis are reported for OAE4, OAE5, OAE7, and OAE8a. The charge transport characteristics of derivatives OAE3–OAE9 in single-molecular junctions have been studied using the mechanically controlled break junction technique. The data demonstrate that the junction conductance decreases with increasing molecular length. A transition from coherent transport via tunneling to a hopping mechanism is found for OAE wires longer than ca. 3 nm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Effingen Member is a low-permeability rock unit of Oxfordian age (ca. 160 Ma) that occurs across northern Switzerland. It comprises sandy calcareous marls and (argillaceous) limestones. This report describes the hydrogeochemistry, mineralogy and supporting physical properties of the Effingen Member in three boreholes in the Jura-Südfuss area: Oftringen, Gösgen and Küttigen, where it is 220–240 m thick. The top of the Effingen Member is at 420, 66 and 32 m depths at the three sites. Core materials are available from Oftringen and Gösgen, whereas information from Küttigen is limited to cuttings, in-situ hydrogeological testing and geophysical logging. Hydrogeological boundaries of the Effingen Member vary between locations. Ground-water flows were identified during drilling at the top (Geissberg Member), but not at the base, of the Effingen Member at Oftringen, at the base (Hauptrogenstein Formation) of the Effingen Member at Gösgen, and in a limestone layer (Gerstenhübel unit) within the Effingen Member at Küttigen. The marls and limestones of the Effingen Member have carbonate contents of 46–91 wt.-% and clay-mineral contents of 5–37 wt.-%. Pyrite contents are up to 1.6 wt.-%, but no sulphate minerals were detected by routine analyses. Clay minerals are predominantly mixed-layer illite-smectite, illite and kaolinite, with sporadic traces of chlorite and smectite. Veins filled with calcite ± celestite occur through the Effingen Member at Oftringen but not at Gösgen or Küttigen. They formed at 50–70 ºC from externally derived fluids, probably of Miocene age. Water contents are 0.7–4.2 wt.-%, corresponding to a water-loss porosity range of 1.9–10.8 vol.-%. Specific surface areas, measured by the BET method, are 2–30 m2/g, correlating with clay-mineral contents. Water activity has been measured and yielded surprisingly low values down to 0.8. These cannot be explained by pore-water salinity alone and include other effects, such as changes in the fabric due to stress release or partial saturation. Observed variations in measurements are not fully understood. Cation exchange capacity (CEC) and exchangeable cation populations have been studied by the Ni-en method. CEC, derived from the consumption of the index cation Ni, is 9–99 meq/kgrock at a solid:liquid ratio of 1, correlating with the clay-mineral content. Cation concentrations in Ni-en extract solutions are in the order Na+≥Ca2+>Mg2+>K+>Sr2+. However, the analytical results from the Ni-en extractions have additional contributions from cations originating from pore water and from mineral dissolution reactions that occurred during extraction, and it was not possible to reliably quantify these contributions. Therefore, in-situ cation populations and selectivity coefficients could not be derived. A suite of methods have been used for characterising the chemical compositions of pore waters in the Effingen Member. Advective displacement was used on one sample from each Oftringen and Gösgen and is the only method that produces results that approach complete hydrochemical compositions. Aqueous extraction was used on core samples from these two boreholes and gives data only for Cl- and, in some cases, Br-. Out-diffusion was used on core samples from Oftringen and similarly gives data for Cl- and Br- only. For both aqueous extraction and out-diffusion, reaction of the experimental water with rock affected concentrations of cations, SO42 and alkalinity in experimental solutions. Another method, centrifugation, failed to extract pore water. Stable isotope ratios (δ18O and δ2H) of pore waters in core samples from Oftringen were analysed by the diffusive exchange method and helium contents of pore water in Oftringen samples were extracted for mass spectrometric analysis by quantitative outgassing of preserved core samples. Several lines of evidence indicate that drillcore samples might not have been fully saturated when opened and subsampled in the laboratory. These include comparisons of water-loss porosities with physical porosities, water-activity measurements, and high contents of dissolved gas as inferred from ground-water samples. There is no clear proof of partial saturation and it is unclear whether this might represent in-situ conditions or is due to exsolution of gas due to the pressure release since drilling. Partial saturation would have no impact on the recalculation of pore-water compositions from aqueous extraction experiments using water-loss porosity data. The largest uncertainty in the pore-water Cl- concentrations recalculated from aqueous extraction and out-diffusion experiments is the magnitude of the anion-accessible fraction of water-loss porosity. General experience of clay-mineral rich formations suggests that the anion-accessible porosity fraction is very often about 0.5 and generally in a range of 0.3 to 0.6 and tends to be inversely correlated with clay-mineral contents. Comparisons of the Cl- concentration in pore water obtained by advective displacement with that recalculated from aqueous extraction of an adjacent core sample suggests a fraction of 0.27 for an Oftringen sample, whereas the same procedure for a Gösgen sample suggests a value of 0.64. The former value for anion-accessible porosity fraction is presumed to be unrepresentative given the local mineralogical heterogeneity at that depth. Through-diffusion experiments with HTO and 36Cl- suggest that the anion-accessible porosity fraction in the Effingen Member at Oftringen and Gösgen is around 0.5. This value is proposed as a typical average for rocks of the Effingen Member, bearing in mind that it varies on a local scale in response to the heterogeneity of lithology and pore-space architecture. The substantial uncertainties associated with the approaches to estimating anion-accessible porosity propagate into the calculated values of in-situ pore-water Cl- concentrations. On the basis of aqueous extraction experiments, and using an anion-accessible porosity fraction of 0.5, Cl- concentrations in the Effingen Member at Oftringen reach a maximum of about 14 g/L in the centre. Cl- decreases upwards and downwards from that, forming a curved depth profile. Cl- contents in the Effingen Member at Gösgen increase with depth from about 3.5 g/L to about 14 g/L at the base of the cored profile (which corresponds to the centre of the formation). Out-diffusion experiments were carried out on four samples from Oftringen, distributed through the Effingen Member. Recalculated Cl- concentrations are similar to those from aqueous extraction for 3 out of the 4 samples, and somewhat lower for one sample. Concentrations of other components, i.e. Na+, K+, Ca2+, Mg2+, Sr2+, SO42- and HCO3- cannot be obtained from the aqueous extraction and out-diffusion experimental data because of mineral dissolution and cation exchange reactions during the experiments. Pore-water pH also is not constrained by those extraction experiments. The only experimental approach to obtain complete pore-water compositions for samples from Oftringen and Gösgen is advective displacement of pore water. The sample from Oftringen used for this experiment is from 445 m depth in the upper part of the Effingen Member and gave eluate with 16.5 g/L Cl- whereas aqueous extraction from a nearby sample indicated about 9 g/L Cl-. The sample from Gösgen used for advective displacement is from 123 m depth in the centre of the Effingen Member sequence and gave eluate with about 9 g/L Cl- whereas aqueous extraction gave 11.5 g/L Cl-. In both cases the pore waters have Na-(Ca)-Cl compositions and SO42- concentrations of about 1.1 g/L. The Gösgen sample has a Br/Cl ratio similar to that of sea water, whereas this ratio is lower for the Oftringen sample. Taking account of uncertainties in the applied experimental approaches, it is reasonable to place an upper limit of ca. 20 g/L on Cl- concentration for pore water in the Effingen Member in this area. There are major discrepancies between pore-water SO42- concentrations inferred from aqueous extraction or out-diffusion experiments and those obtained from advective displacement in both the Oftringen and Gösgen cases. A general conclusion is that all or at least part of the discrepancies are attributable to perturbation of the sulphur system and enhancement of SO42- by sulphate mineral dissolution and possibly minor pyrite oxidation during aqueous extraction and out-diffusion. Therefore, data for SO42- calculated from those pore-water sampling methods are considered not to be representative of in-situ conditions. A reference pore-water composition was defined for the Effingen Member in the Jura Südfuss area. It represents the probable upper limits of Cl- contents and corresponding anion and cation concentrations that are reasonably constrained by experimental data. Except for Cl- and possibly Na+ concentrations, this composition is poorly constrained especially with respect to SO42- and Ca2+ concentrations, and pH and alkalinity. Stable isotope compositions, δ18O and δ2H, of pore waters in the Effingen Member at Oftringen plot to the right of the meteoric water line, suggesting that 18O has been enriched by water-rock exchange, which indicates that the pore waters have a long residence time. A long residence time of pore water is supported by the level of dissolved 4He that has accumulated in pore water of the Effingen Member at Oftringen. This is comparable with, or slightly higher than, the amounts of 4He in the Opalinus Clay at Benken. Ground waters were sampled from flowing zones intersected by boreholes at the three locations. The general interpretation is that pore waters and ground-water solutes may have similar origins in Mesozoic and Cenozoic brackish-marine formations waters, but ground-water solutes have been diluted rather more than pore waters by ingress of Tertiary and Quaternary meteoric waters. The available hydrochemical data for pore waters from the Effingen Member at these three locations in the Jura-Südfuss area suggest that the geochemical system evolved slowly over geological periods of time, in which diffusion was an important mechanism of solute transport. The irregularity of Cl- and δ18O profiles and spatial variability of advective ground-water flows in the Malm-Dogger system suggests that palaeohydrogeological and hydrochemical responses to changing tectonic and surface environmental conditions were complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser pulses are largely used for processing and analysis of materials and in particular for nano-particle synthesis. This paper addresses fundamentals of the generation of nano-materials following specific thermodynamic paths of the irradiated material. Computer simulations using the hydro code MULTI and the SESAME equation of state have been performed to follow the dynamics of a target initially heated by a short laser pulse over a distance comparable to the metal skin depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N–N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235–350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic–basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fossil plant-bearing beds of the Tortonian (late Miocene) intramontane basin of La Cerdanya (Eastern Pyrenees, Catalonia, Spain) have been investigated for more than a century, and 165 species from 12 outcrops have been described in previous publications. The sediments with rich plant fossil assemblages, which correspond to lacustrine diatomitic deposits, contain large numbers of plant remains, mainly leaf compressions and impressions. These assemblages are well preserved, a consequence of the rapid accumulation of plant remains in the sediments of the basin's ancient lake, and the often close proximity of its shores to wetland and upland vegetation. This paper provides a comprehensive taxonomic and nomenclatural review of the historic and new collections of late Miocene macroflora for the La Cerdanya Basin. Examination of the newer materials allowed emendments to be made to the diagnoses ofAbies saportana, Acer pyrenakum,Alnus occidentalis, Quercus hispanka and Tilia vidali provided by REROLLE for the basin at the end of the 19th century. In addition, 24 species of vascular plants are identified for the basin for the first time, including one horsetail, three conifers, 19 arboreal or bushy dicotyledonous angiosperms, and one monocotyledonous angiosperm. Indeed, this is the first time that Cedrela helkonia (UNGER) KNOBLOCH, Decodon sp„ Hedera cf multinervis KOLAKOVSKII, Mahonia cf pseudosimplex KVACEK & WALTHER, Smilax cf. aspera L. vm.fossilis and Ulmus cf. plurinervia UNGER have been recorded anywhere in the Iberian Peninsula. The La Cerdanya Basin plant assemblages of the late Miocene mainly consisted of conifers and deciduous broadleaved taxa of Arctotertiary origin; evergreen Palaeotropical elements were less well represented. This flora is similar to those recorded at coeval sites in northern Greece, northern Italy and central and eastern France. Within the Iberian Peninsula, the late Miocene macroflora reported for the nearby Seu d'Urgell Basin is the most similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pure and cerium doped sodium bismuth titanate inorganic powders were synthesized by solid state reaction method. The presence of rhombohedral phase was observed in cerium doped NBT compounds. At 1200 ºC, the 5% of cerium doped NBT compound forms single perovskite phase. The samples of x = 0.10 and 0.15 were heat treated to 1350 ºC, the binary phases with cerium and bismuth oxides were observed. The X-ray diffraction, fourier transform infrared spectroscopy, reflectance spectra, differential thermal analysis and thermo gravimetric analysis were used to analyze the various properties of samples. Moreover, the effects of cerium doping and calcining temperature on NBT samples were investigated. In this work we present our recent results on the synthesis and characterization of Ce doped sodium bismuth titanate materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An efficient monoclonal aldolase antibody that proceeds by an enamine mechanism was generated by reactive immunization. Here, this catalyst has been used in the total synthesis of epothilones A (1) and C (3). The starting materials for the synthesis of these molecules have been obtained by using antibody-catalyzed aldol and retro-aldol reactions. These precursors were then converted to epothilones A (1) and C (3) to complete the total synthesis.