972 resultados para Macrophage binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When grown in the presence of exogenous collagen I, Mycobacterium bovis BCG was shown to form clumps. Scanning electron microscopy examination of these clumps revealed the presence of collagen fibres cross-linking the bacilli. Since collagen is a major constituent of the eukaryotic extracellular matrices, we assayed BCG cytoadherence in the presence of exogenous collagen I. Collagen increased the interaction of the bacilli with A549 type II pneumocytes or U937 macrophages, suggesting that BCG is able to recruit collagen to facilitate its attachment to host cells. Using an affinity chromatography approach, we have isolated a BCG collagen-binding protein corresponding to the previously described mycobacterial laminin-binding histone-like protein (LBP/Hlp), a highly conserved protein associated with the mycobacterial cell wall. Moreover, Mycobacterium leprae LBP/Hlp, a well-characterized adhesin, was also able to bind collagen I. Finally, using recombinant fragments of M. leprae LBP/Hlp, we mapped the collagen-binding activity within the C-terminal domain of the adhesin. Since this protein was already shown to be involved in the recognition of laminin and heparan sulphate-containing proteoglycans, the present observations reinforce the adhesive activities of LBP/Hlp, which can be therefore considered as a multifaceted mycobacterial adhesin, playing an important role in both leprosy and tuberculosis pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytokine macrophage migration inhibitory factor plays a central role in inflammation, cell proliferation and tumorigenesis. Moreover, macrophage migration inhibitory factor levels correlate with tumor aggressiveness and metastatic potential. Histone deacetylase inhibitors are potent antitumor agents recently introduced in the clinic. Therefore, we hypothesized that macrophage migration inhibitory factor would represent a target of histone deacetylase inhibitors. Confirming our hypothesis, we report that histone deacetylase inhibitors of various chemical classes strongly inhibited macrophage migration inhibitory factor expression in a broad range of cell lines, in primary cells and in vivo. Nuclear run on, transient transfection with macrophage migration inhibitory factor promoter reporter constructs and transduction with macrophage migration inhibitory factor expressing adenovirus demonstrated that trichostatin A (a prototypical histone deacetylase inhibitor) inhibited endogenous, but not episomal, MIF gene transcription. Interestingly, trichostatin A induced a local and specific deacetylation of macrophage migration inhibitory factor promoter-associated H3 and H4 histones which did not affect chromatin accessibility but was associated with an impaired recruitment of RNA polymerase II and Sp1 and CREB transcription factors required for basal MIF gene transcription. Altogether, this study describes a new molecular mechanism by which histone deacetylase inhibitors inhibit MIF gene expression, and suggests that macrophage migration inhibitory factor inhibition by histone deacetylase inhibitors may contribute to the antitumorigenic effects of histone deacetylase inhibitors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemoreception is a biological process essential for the survival of animals, as it allows the recognition of important volatile cues for the detection of food, egg-laying substrates, mates or predators, among other purposes. Furthermore, its role in pheromone detection may contribute to evolutionary processes such as reproductive isolation and speciation. This key role in several vital biological processes makes chemoreception a particularly interesting system for studying the role of natural selection in molecular adaptation. Two major gene families are involved in the perireceptor events of the chemosensory system: the odorant-binding protein (OBP) and chemosensory protein (CSP) families. Here, we have conducted an exhaustive comparative genomic analysis of these gene families in twenty Arthropoda species. We show that the evolution of the OBP and CSP gene families is highly dynamic, with a high number of gains and losses of genes, pseudogenes and independent origins of subfamilies. Taken together, our data clearly support the birth-and-death model for the evolution of these gene families with an overall high gene-turnover rate. Moreover, we show that the genome organization of the two families is significantly more clustered than expected by chance and, more important, that this pattern appears to be actively maintained across the Drosophila phylogeny. Finally, we suggest the homologous nature of the OBP and CSP gene families, dating back their MRCA (most recent common ancestor) to 380¿420 Mya, and we propose a scenario for the origin and diversification of these families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, is a facultative intracellular pathogen that uses the host mononuclear phagocyte as a niche for survival and replication during infection. Complement component C3 has previously been shown to enhance the binding of M. tuberculosis to mononuclear phagocytes. Using a C3 ligand affinity blot protocol, we identified a 30 kDa C3-binding protein in M. tuberculosis as heparin-binding hemagglutinin (HbhA). HbhA was found to be a hydrophobic protein that localized to the cell membrane/cell wall fraction of M. tuberculosis, and this protein has previously been shown by others to be located on the surface of M. tuberculosis. The C3-binding activity of HbhA was localized to the C-terminus of the protein, which consists of lysine-alanine repeats. Full-length recombinant HbhA coated onto latex beads was shown to mediate the adherence of the beads to murine macrophage-like cells in both a C3-dependent and a C3-independent manner. An in-frame 576 by deletion in the hbhA gene was created in a virulent strain of M. tuberculosis using a PCR technique known as gene splicing by overlap extension (SOEing). Using the ΔhbhA mutant, HbhA was found not to be necessary for growth of M. tuberculosis in laboratory media or in macrophage-like cells, nor is HbhA required for adherence of M. tuberculosis to macrophage-like cells. HbhA is, however, required for infectivity of M. tuberculosis in mice. Mice infected with the ΔhbhA mutant show decreased growth in the lungs, liver, and spleen compared to mice infected with the wild-type strain. Using the ΔhbhA mutant strain, we were able to purify and identify a second 30-kDa C3-binding protein, HupB. These data demonstrate that HbhA is required for the in vivo but not the in vitro survival of M. tuberculosis and that HbhA is not necessary for the adherence of M. tuberculosis to the macrophage-like cells used in these studies. The expression of two proteins that bind human C3 may aid in the efficient binding of M. tuberculosis to complement receptors for uptake into mononuclear cells, or may influence other aspects of the host-parasite interaction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrPSc). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrPC) using scrapie-infected mouse (Mo) neuroblastoma cells transfected with chimeric Hu/MoPrP genes even though protein X has not yet been isolated. Substitution of a Hu residue at position 214 or 218 prevented PrPSc formation. The side chains of these residues protrude from the same surface of the C-terminal α-helix and form a discontinuous epitope with residues 167 and 171 in an adjacent loop. Substitution of a basic residue at positions 167, 171, or 218 also prevented PrPSc formation: at a mechanistic level, these mutant PrPs appear to act as “dominant negatives” by binding protein X and rendering it unavailable for prion propagation. Our findings seem to explain the protective effects of basic polymorphic residues in PrP of humans and sheep and suggest therapeutic and prophylactic approaches to prion diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human RIN1 was first characterized as a RAS binding protein based on the properties of its carboxyl-terminal domain. We now show that full-length RIN1 interacts with activated RAS in mammalian cells and defines a minimum region of 434 aa required for efficient RAS binding. RIN1 interacts with the “effector domain” of RAS and employs some RAS determinants that are common to, and others that are distinct from, those required for the binding of RAF1, a known RAS effector. The same domain of RIN1 that binds RAS also interacts with 14-3-3 proteins, extending the similarity between RIN1 and other RAS effectors. When expressed in mammalian cells, the RAS binding domain of RIN1 can act as a dominant negative signal transduction blocker. The amino-terminal domain of RIN1 contains a proline-rich sequence similar to consensus Src homology 3 (SH3) binding regions. This RIN1 sequence shows preferential binding to the ABL–SH3 domain in vitro. Moreover, the amino-terminal domain of RIN1 directly associates with, and is tyrosine phosphorylated by, c-ABL. In addition, RIN1 encodes a functional SH2 domain that has the potential to activate downstream signals. These data suggest that RIN1 is able to mediate multiple signals. A differential pattern of expression and alternate splicing indicate several levels of RIN1 regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF–RecO–RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF–RecO–Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF–RecO–RecR complex functions as an anti-Ssb factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously identified a 94- to 97-kDa oxidized low density lipoprotein (LDL)-binding protein in mouse macrophages as macrosialin (MS), a member of the lamp family. Earlier immunostaining studies have shown that MS and its human homolog, CD68, are predominantly intracellular proteins. However, using sensitive techniques such as flow cytometry (FACS) and cell-surface-specific biotinylation, we now show that there is significant surface expression of these proteins. FACS analysis of intact cells using mAb FA/11 showed small but definite surface expression of MS in resident mouse peritoneal macrophages but this was greatly enhanced with thioglycollate elicitation. Biotinylation of intact cells and detergent-solubilized cell preparations followed by immunoprecipitation revealed 10–15% of the total MS content of elicited macrophages on the plasma membrane. Similar results were obtained with untreated RAW 264.7 cells. FACS analysis of intact THP-1 monocytic cells showed minimal surface expression of CD68 on unactivated cells (4% of total cell content). Stimulation with phorbol 12-myristate 13-acetate increased both surface and total CD68 expression considerably. Furthermore, the specific binding at 4°C and uptake at 37°C of 125I-labeled oxidized LDL by activated THP-1 cells was inhibited by 30–50% by CD68 mAbs KP-1 and EBM-11. Thus, although the surface expression of MS/CD68 at steady-state represents only a small percentage of their total cellular content, these proteins can play a significant role in oxidized LDL uptake by activated macrophages in vitro and could contribute to foam cell formation in atherosclerotic lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is still a lack of information on the specific characteristics of DNA-binding proteins from hyperthermophiles. Here we report on the product of the gene orf56 from plasmid pRN1 of the acidophilic and thermophilic archaeon Sulfolobus islandicus. orf56 has not been characterised yet but low sequence similarily to several eubacterial plasmid-encoded genes suggests that this 6.5 kDa protein is a sequence-specific DNA-binding protein. The DNA-binding properties of ORF56, expressed in Escherichia coli, have been investigated by EMSA experiments and by fluorescence anisotropy measurements. Recombinant ORF56 binds to double-stranded DNA, specifically to an inverted repeat located within the promoter of orf56. Binding to this site could down-regulate transcription of the orf56 gene and also of the overlapping orf904 gene, encoding the putative initiator protein of plasmid replication. By gel filtration and chemical crosslinking we have shown that ORF56 is a dimeric protein. Stoichiometric fluorescence anisotropy titrations further indicate that ORF56 binds as a tetramer to the inverted repeat of its target binding site. CD spectroscopy points to a significant increase in ordered secondary structure of ORF56 upon binding DNA. ORF56 binds without apparent cooperativity to its target DNA with a dissociation constant in the nanomolar range. Quantitative analysis of binding isotherms performed at various salt concentrations and at different temperatures indicates that approximately seven ions are released upon complex formation and that complex formation is accompanied by a change in heat capacity of –6.2 kJ/mol. Furthermore, recombinant ORF56 proved to be highly thermostable and is able to bind DNA up to 85°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication protein A (RPA), the nuclear single-stranded DNA binding protein is involved in DNA replication, nucleotide excision repair (NER) and homologous recombination. It is a stable heterotrimer consisting of subunits with molecular masses of 70, 32 and 14 kDa (p70, p32 and p14, respectively). Gapped DNA structures are common intermediates during DNA replication and NER. To analyze the interaction of RPA and its subunits with gapped DNA we designed structures containing 9 and 30 nucleotide gaps with a photoreactive arylazido group at the 3′-end of the upstream oligonucleotide or at the 5′-end of the downstream oligonucleotide. UV crosslinking and subsequent analysis showed that the p70 subunit mainly interacts with the 5′-end of DNA irrespective of DNA structure, while the subunit orientation towards the 3′-end of DNA in the gap structures strongly depends on the gap size. The results are compared with the data obtained previously with the primer–template systems containing 5′- or 3′-protruding DNA strands. Our results suggest a model of polar RPA binding to the gapped DNA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha subunit of the karyopherin heterodimer functions in recognition of the protein import substrate and the beta subunit serves to dock the trimeric complex to one of many sites on nuclear pore complex fibers. The small GTPase Ran and the Ran interactive protein, p10, function in the release of the docked complex. Repeated cycles of docking and release are thought to concentrate the transport substrate for subsequent diffusion into the nucleus. Ran-GTP dissociates the karyopherin heterodimer and forms a stoichiometric complex with Ran-GTP. Here we report the mapping of karyopherin beta's binding sites both for Ran-GTP and for karyopherin alpha. We discovered that karyopherin beta's binding site for Ran-GTP shows a striking sequence similarity to the cytoplasmic Ran-GTP binding protein, RanBP1. Moreover, we found that Ran-GTP and karyopherin alpha bind to overlapping sites on karyopherin beta. Having a higher affinity to the overlapping site, Ran-GTP displaces karyopherin alpha and binds to karyopherin beta. Competition for overlapping binding sites may be the mechanism by which GTP bound forms of other small GTPases function in corresponding dissociation-association reactions. We also mapped Ran's binding site for karyopherin beta to a cluster of basic residues analogous to those previously shown to constitute karyopherin alpha's binding site to karyopherin beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biological function of the retinoblastoma protein (RB) in the cell division cycle has been extensively documented, but its apparent role in differentiation remains largely unexplored. To investigate how RB is involved in differentiation, the U937 large-cell lymphoma line was induced to differentiate along a monocyte/macrophage lineage. During differentiation RB was found to interact directly through its simian virus 40 large tumor antigen (T antigen)-binding domain with NF-IL6, a member of the CAAT/enhancer-binding protein (C/EBP) family of transcription factors. NF-IL6 utilizes two distinct regions to bind to the hypophosphorylated form of RB in vitro and in cells. Wild-type but not mutant RB enhanced both binding activity of NF-IL6 to its cognate DNA sequences in vitro and promoter transactivation by NF-IL6 in cells. These findings indicate a novel biochemical function of RB: it activates, by an apparent chaperone-like activity, specific transcription factors important for differentiation. This contrasts with its sequestration and inactivation of other transcription factors, such as E2F-1, which promote progression of the cell cycle. Such disparate mechanisms may help to explain the dual role of RB in cell differentiation and the cell division cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most proteins that activate RNA polymerase II-mediated transcription in eukaryotic cells contain sequence-specific DNA-binding domains and "activation" regions. The latter bind general transcription factors and/or coactivators and are required for high-level transcription. Their function in vivo is unknown. Since several activation domains bind the TATA-binding protein (TBP), TBP-associated factors, or other general factors in vitro, one role of the activation domain may be to facilitate promoter occupancy by supporting cooperative binding of the activator and general transcription factors. Using the GAL4 system of yeast, we have tested this model in vivo. It is demonstrated that the presence of a TATA box (the TBP binding site) facilitates binding of GAL4 protein to low- and moderate-affinity sites and that the activation domain modulates these effects. These results support the cooperative binding model for activation domain function in vivo.