426 resultados para MYOSIN-XVA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Atrophy of skeletal muscle in cancer cachexia has been attributed to a tumour-produced highly glycosylated peptide called proteolysis-inducing factor (PIF). The action of PIF is mediated through a high-affinity membrane receptor in muscle. This study investigates the ability of peptides derived from the 20 N-terminal amino acids of the receptor to neutralise PIF action both in vitro and in vivo. Methods: Proteolysis-inducing factor was purified from the MAC16 tumour using an initial pronase digestion, followed by binding on DEAE cellulose, and the pronase was inactivated by heating to 80°C, before purification of the PIF using affinity chromatography. In vitro studies were carried out using C2C12 murine myotubes, while in vivo studies employed mice bearing the cachexia-inducing MAC16 tumour. Results: The process resulted in almost a 23?000-fold purification of PIF, but with a recovery of only 0.004%. Both the D- and L-forms of the 20mer peptide attenuated PIF-induced protein degradation in vitro through the ubiquitin-proteosome proteolytic pathway and increased expression of myosin. In vivo studies showed that neither the D- nor the L-peptides significantly attenuated weight loss, although the D-peptide did show a tendency to increase lean body mass. Conclusion: These results suggest that the peptides may be too hydrophilic to be used as therapeutic agents, but confirm the importance of the receptor in the action of the PIF on muscle protein degradation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective-We previously demonstrated that upregulation of intermediate-conductance Ca2+ -activated K+ channels (KCa 3.1) is necessary for mitogen-induced phenotypic modulation in isolated porcine coronary smooth muscle cells (SMCs). The objective of the present study was to determine the role of KCa3.1 in the regulation of coronary SMC phenotypic modulation in vivo using a swine model of postangioplasty restenosis. Methods and Results-Balloon angioplasty was performed on coronary arteries of swine using either noncoated or balloons coated with the specific KCa3.1 blocker TRAM-34. Expression of KCa3.1, c-jun, c-fos, repressor element-1 silencing transcription factor (REST), smooth muscle myosin heavy chain (SMMHC), and myocardin was measured using qRT-PCR in isolated medial cells 2 hours and 2 days postangioplasty. KCa3.1, c-jun, and c-fos mRNA levels were increased 2 hours postangioplasty, whereas REST expression decreased. SMMHC expression was unchanged at 2 hours, but decreased 2 days postangioplasty. Use of TRAM-34 coated balloons prevented KCa3.1 upregulation and REST downregulation at 2 hours, SMMHC and myocardin downregulation at 2 days, and attenuated subsequent restenosis 14 and 28 days postangioplasty. Immunohistochemical analysis demonstrated corresponding changes at the protein level. Conclusion-Blockade of KCa3.1 by delivery of TRAM-34 via balloon catheter prevented smooth muscle phenotypic modulation and limited subsequent restenosis. © 2008 American Heart Association, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vast diversity of S100 proteins has demonstrated a multitude of biological correlations with cell growth, cell differentiation and cell survival in numerous physiological and pathological conditions in all cells of the body. This review summarises some of the reported regulatory functions of S100 proteins (namely S100A1, S100A2, S100A4, S100A6, S100A7, S100A8/S100A9, S100A10, S100A11, S100A12, S100B and S100P) on cellular migration and invasion, established in both culture and animal model systems and the possible mechanisms that have been proposed to be responsible. These mechanisms involve intracellular events and components of the cytoskeletal organisation (actin/myosin filaments, intermediate filaments and microtubules) as well as extracellular signalling at different cell surface receptors (RAGE and integrins). Finally, we shall attempt to demonstrate how aberrant expression of the S100 proteins may lead to pathological events and human disorders and furthermore provide a rationale to possibly explain why the expression of some of the S100 proteins (mainly S100A4 and S100P) has led to conflicting results on motility, depending on the cells used. © 2013 Springer Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) has been shown to attenuate protein degradation in murine myotubes induced by angiotensin II through downregulation of the ubiquitin-proteasome pathway, although the mechanism is not known. Angiotensin II is known to upregulate this pathway through a cellular signalling mechanism involving release of arachidonic acid, activation of protein kinase Cα (PKCα), degradation of inhibitor-κB (I-κB) and nuclear migration of nuclear factor-κB (NF-κB), and all of these events were attenuated by IGF-I (13.2 nM). Induction of the ubiquitin-proteasome pathway has been linked to activation of the RNA-activated protein kinase (PKR), since an inhibitor of PKR attenuated proteasome expression and activity in response to angiotensin II and prevented the decrease in the myofibrillar protein myosin. Angiotensin II induced phosphorylation of PKR and of the eukaryotic initiation factor-2 (eIF2) on the α-subunit, and this was attenuated by IGF-I, by induction of the expression of protein phosphatase 1, which dephosphorylates PKR. Release of arachidonic acid and activation of PKCα by angiotensin II were attenuated by an inhibitor of PKR and IGF-I, and the effect was reversed by Salubrinal (15 μM), an inhibitor of eIF2α dephosphorylation, as was activation of PKCα. In addition myotubes transfected with a dominant-negative PKR (PKRΔ6) showed no release of arachidonate in response to Ang II, and no activation of PKCα. These results suggest that phosphorylation of PKR by angiotensin II was responsible for the activation of the PLA2/PKC pathway leading to activation of NF-κB and that IGF-I attenuates protein degradation due to an inhibitory effect on activation of PKR. © 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrophy of skeletal muscle is due to a depression in protein synthesis and an increase in degradation. Studies in vitro have suggested that activation of the dsRNA-dependent protein kinase (PKR) may be responsible for these changes in protein synthesis and degradation. In order to evaluate whether this is also applicable to cancer cachexia the action of a PKR inhibitor on the development of cachexia has been studied in mice bearing the MAC16 tumour. Treatment of animals with the PKR inhibitor (5 mg kg-1) significantly reduced levels of phospho-PKR in muscle down to that found in non-tumour-bearing mice, and effectively attenuated the depression of body weight, with increased muscle mass, and also inhibited tumour growth. There was an increase in protein synthesis in skeletal muscle, which paralleled a decrease in eukaryotic initiation factor 2α phosphorylation. Protein degradation rates in skeletal muscle were also significantly decreased, as was proteasome activity levels and expression. Myosin levels were increased up to values found in non-tumour-bearing animals. Proteasome expression correlated with a decreased nuclear accumulation of nuclear factor-κB (NF-κB). The PKR inhibitor also significantly inhibited tumour growth, although this appeared to be a separate event from the effect on muscle wasting. These results suggest that inhibition of the autophosphorylation of PKR may represent an appropriate target for the attenuation of muscle atrophy in cancer cachexia. © 2007 Cancer Research UK.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although muscle atrophy is common to a number of disease states there is incomplete knowledge of the cellular mechanisms involved. In this study murine myotubes were treated with the phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) to evaluate the role of protein kinase C (PKC) as an upstream intermediate in protein degradation. TPA showed a parabolic dose-response curve for the induction of total protein degradation, with an optimal effect at a concentration of 25 nM, and an optimal incubation time of 3 h. Protein degradation was attenuated by co-incubation with the proteasome inhibitor lactacystin (5 μM), suggesting that it was mediated through the ubiquitin-proteasome proteolytic pathway. TPA induced an increased expression and activity of the ubiquitin-proteasome pathway, as evidenced by an increased functional activity, and increased expression of the 20S proteasome α-subunits, the 19S subunits MSS1 and p42, as well as the ubiquitin conjugating enzyme E214k, also with a maximal effect at a concentration of 25 nM and with a 3 h incubation time. There was also a reciprocal decrease in the cellular content of the myofibrillar protein myosin. TPA induced activation of PKC maximally at a concentration of 25 nM and this effect was attenuated by the PKC inhibitor calphostin C (300 nM), as was also total protein degradation. These results suggest that stimulation of PKC in muscle cells initiates protein degradation through the ubiquitin-proteasome pathway. TPA also induced degradation of the inhibitory protein, I-κBα, and increased nuclear accumulation of nuclear factor-κB (NF-κB) at the same time and concentrations as those inducing proteasome expression. In addition inhibition of NF-κB activation by resveratrol (30 μM) attenuated protein degradation induced by TPA. These results suggest that the induction of proteasome expression by TPA may involve the transcription factor NF-κB. © 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 205 proteasome α-subunits, two subunits of the 195 regulator MSSI and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin-proteasome proteolytic pathway, as determined by the 'chymotrypsin-like' enzyme activity, proteasome subunits and E2 14k. However, curcumin (150 and 300 mg kg-1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg-1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscle wasting in cancer cachexia is associated with increased levels of malondialdehyde (MDA) in gastrocnemius muscles, suggesting an increased oxidative stress. To determine whether oxidative stress contributes to muscle protein catabolism, an in vitro model system, consisting of C2C12 myotubes, was treated with either 0.2 mM FeSO4, 0.1 mM H2O2, or both, to replicate the rise in MDA content in cachexia. All treatments caused an increased protein catabolism and a decreased myosin expression. There was an increase in the proteasome chymotrypsin-like enzyme activity, while immunoblotting showed an increased expression of the 20S proteasome α-subunits, p42, and the ubiquitin-conjugating enzyme, E214k. These results show that mild oxidative stress increases protein degradation in skeletal muscle by causing an increased expression of the major components of the ubiquitin-proteasome pathway. © 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The canonical function of eEF1A is delivery of the aminoacylated tRNA to the A site of the ribosome during protein translation, however, it is also known to be an actin binding protein. As well as this actin binding function, eEF1A has been shown to be involved in other cellular processes such as cell proliferation and apoptosis. It has long been thought that the actin cytoskeleton and protein synthesis are linked and eEF1A has been suggested to be a candidate protein to form this link, though very little is understood about the relationship between its two functions. Overexpression of eEF1A has also been shown to be implicated in many different types of cancers, especially cancers that are metastatic, therefore it is important to further understand how eEF1A can affect both translation and the organisation of the actin cytoskeleton. To this end, we aimed to determine the effects of reduced expression of eEF1A on both translation and its non canonical functions in CHO cells. We have shown that reduced expression of eEF1A in this cell system results in no change in protein synthesis, however results in an increased number of actin stress fibres and other proteins associated with these fibres such as myosin IIA, paxillin and vinculin. Cell motility and attachment are also affected by this reduction in eEF1A protein expression. The organisational and motility phenotypes were found to be specific to eEF1A by transforming the cells with plasmids containing either human eEF1A1 or eEF1A2. Though the mechanisms by which these effects are regulated have not yet been established, this data provides evidence to show that the translation and actin binding functions of eEF1A are independent of each other as well as being suggestive of a role for eEF1A in cell motility as supported by the observation that overexpression of eEF1A protein tends to be associated with the cancer cells that are metastatic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the first discovery of S100 members in 1965, their expressions have been affiliated with numerous biological functions in all cells of the body. However, in the recent years, S100A4, a member of this superfamily has emerged as the central target in generating new avenue for cancer therapy as its overexpression has been correlated with cancer patients’ mortality as well as established roles as motility and metastasis promoter. As it has no catalytic activity, S100A4 has to interact with its target proteins to regulate such effects. Up to date, more than 10 S100A4 target proteins have been identified but the mechanical process regulated by S100A4 to induce motility remains vague. In this work, we demonstrated that S100A4 overexpression resulted in actin filaments disorganisation, reduction in focal adhesions, instability of filopodia as well as exhibiting polarised morphology. However, such effects were not observed in truncated versions of S100A4 possibly highlighting the importance of C terminus of S100A4 target recognition. In order to assess some of the intracellular mechanisms that may be involved in promoting migrations, different strategies were used, including active pharmaceutical agents, inhibitors and knockdown experiments. Treatment of S100A4 overexpressing cells with blebbistatin and Y-27632, non muscle myosin IIA (NMMIIA) inhibitors, as well as knockdown of NMMIIA, resulted in motility enhancement and focal adhesions reduction proposing that NMMIIA assisted S100A4 in regulating cell motility but its presence is not essential. Further work done using Cos 7 cell lines, naturally lacking NMMIIA, further demonstrated that S100A4 is capable of regulating cell motility independent of NMMIIA, possibly through poor maturation of focal adhesion. Given that all these experiments highlighted the independency of NMMIIA towards migration, a protein that has been put at the forefront of S100A4-induced motility, we aimed to gather further understanding regarding the other molecular mechanisms that may be at play for motility. Using high throughput imaging (HCI), 3 compounds were identified to be capable of inhibiting S100A4-mediated migration. Although we have yet to investigate the underlying mechanism for their effects, these compounds have been shown to target membrane proteins and the externalisation of S100 proteins, for at least one of the compounds, leading us to speculate that preventing externalisation of S100A4 could potentially regulate cell motility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mice (30+-3 days old) were exposed to hypergravity (4G, one hour/day). Cross-sections of ankle extensor muscles stained immunohistochemically against slow myosin (MHC) determined if hypergravity affects the distribution of slow muscle fibers. Comparisons (ANOVA) between exposed and unexposed animals show hypergravity causes increases in slow fiber density in soleus after fourteen (p=0.049) and thirty day (p=0.Ol9) exposures. Therefore, loading may induce faster development of soleus through increased slow fiber density. Slow fibers increase in plantaris in males after seven (p=0.008) and in females after fourteen days (p=0.003), suggesting hypergravity delays normal elimination of slow fibers. Lateral and intermediate heads of lateral gastrocnemius (LG) show greater numbers of slow fibers, overall, in exposed mice (p=0.003 both). A proximal compartment of LG (LGp) and medial gastrocnemius (MG) are minimally affected by hypergravity. In LGp, only males exposed for fourteen days show decreased slow fiber density (p=0.047), but MG increased slow fiber numbers in exposed females compared to controls (p=0.04).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Autologous nerve grafts are the current gold standard for the repair of peripheral nerve injuries. However, there is a need to develop an alternative to this technique, as donor-site morbidities such as neuroma formation and permanent loss of function are a few of the limitations concerned with this technique. Artificial nerve conduits have therefore emerged as an alternative for the repair of short peripheral nerve defects of less than 30 mm, however they do not surpass autologous nerve grafts clinically. To develop a nerve conduit that supports regeneration over long nerve gaps and in large diameter nerves, researchers have focused on functionalizing of the conduits by studying the components that enhance nerve regeneration such as micro/nano-topography, growth factor delivery systems, supportive cells and extracellular matrix (ECM) proteins as well as understanding the complex biological reactions that take place during peripheral nerve regeneration. This thesis presents strategies to improve peripheral nerve interfaces to better the regenerative potential by using dorsal root ganglions (DRGs) isolated from neonatal rats as an in vitro model of nerve regeneration. The work started off by investigating the usefulness of a frog foam protein Ranaspumin-2 (Rsn2) to coat biomaterials for compatibility, this lead to the discovery of temporary cell adhesion on polydimethylsiloxane (PDMS), which was investigated as a suitable tool to derive cell-sheets for nerve repair. The influence of Rsn2 anchored to specific adhesion peptide sequences, such as isoleucine-lysine-valine-alanine-valine (IKVAV), a sequence derived from laminin proven to promote cell adhesion and neurite outgrowth, was tested as a useful means to influence nerve regeneration. This approach improves the axonal outgrowth and maintains outgrowth long term. Based on the hypothesis that combinational modulation of substrate topography, stiffness and neurotrophic support, affects axonal outgrowth in whole DRGs, dissociated DRGs were used to assess if these factors similarly act at the single cell level. Rho associated protein kinase (ROCK) and myosin II inhibitors, which affect cytoskeletal contractility, were used to influence growth cone traction forces and have shown that these factors work in combination by interfering with growth cone dynamic creating a different response in axonal outgrowth at the single cell level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intestinal mucosa is the first biological barrier encountered by natural toxins, and could possibly be exposed to high amounts of dietary mycotoxins. Patulin (PAT), a mycotoxin produced by Penicillium spp. during fruit spoilage, is one of the best known enteropathogenic mycotoxins able to alter functions of the intestine (Maresca et al., 2008). This study evaluated the effects of PAT on barrier function of the gut mucosa utilizing the intestinal epithelial cell model Caco-2, and scrutinized immunomodulatory effects using human peripheral blood mononuclear cells (PBMC) and human blood monocyte-derived dendritic cells (moDCs) as test systems. PAT exposure reduced Caco-2 cell viability at concentrations above 12 mM. As expected, the integrity of a polarized Caco-2 monolayer was affected by PAT exposure, as demonstrated by a decrease in TER values, becoming more pronounced at 50 mM. No effects were detected on the expression levels of the tight junction proteins occludin, claudin-1 and claudin-3 at 50 mM. However, the expression of zonula occludens-1 (ZO-1) and myosin light chain 2 (MLC2) declined. Also, levels of phospho-MLC2 (p-MLC2) increased after 24 h of exposure to 50 mM of PAT. T cell proliferation was highly sensitive to PAT with major effects for concentrations above 10 nM of PAT. The same conditions did not affect the maturation of moDC. PAT causes a reduction in Caco-2 barrier function mainly by perturbation of ZO-1 levels and the phosphorylation of MLC. Low doses of PAT strongly inhibited T cell proliferation induced by a polyclonal activator, but had no effect on the maturation of moDC. These results provide new information that strengthens the concept that the epithelium and immune cells of the intestinal mucosa are important targets for the toxic effects of food contaminants like mycotoxins