866 resultados para MUSCLE PROTEIN-SYNTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interleukin-2 (IL-2) is an important mediator in the vertebrate immune system. IL-2 is a potent growth factor that mature T lymphocytes use as a proliferation signal and the production of IL-2 is crucial for the clonal expansion of antigen-specific T cells in the primary immune response. IL-2 driven proliferation is dependent on the interaction of the lymphokine with its cognate multichain receptor. IL-2 expression is induced only upon stimulation and transcriptional activation of the IL-2 gene relies extensively on the coordinate interaction of numerous inducible and constitutive trans-acting factors. Over the past several years, thousands of papers have been published regarding molecular and cellular aspects of IL-2 gene expression and IL-2 function. The vast majority of these reports describe work that has been carried out in vitro. However, considerably less is known about control of IL-2 gene expression and IL-2 function in vivo.

To gain new insight into the regulation of IL-2 gene expression in vivo, anatomical and developmental patterns of IL-2 gene expression in the mouse were established by employing in situ hybridization and immunohistochemical staining methodologies to tissue sections generated from normal mice and mutant animals in which T -cell development was perturbed. Results from these studies revealed several interesting aspects of IL-2 gene expression, such as (1) induction of IL-2 gene expression and protein synthesis in the thymus, the primary site of T-cell development in the body, (2) cell-type specificity of IL-2 gene expression in vivo, (3) participation of IL-2 in the extrathymic expansion of mature T cells in particular tissues, independent of an acute immune response to foreign antigen, (4) involvement of IL-2 in maintaining immunologic balance in the mucosal immune system, and (5) potential function of IL-2 in early events associated with hematopoiesis.

Extensive analysis of IL-2 mRNA accumulation and protein production in the murine thymus at various stages of development established the existence of two classes of intrathymic IL-2 producing cells. One class of intrathymic IL-2 producers was found exclusively in the fetal thymus. Cells belonging to this subset were restricted to the outermost region of the thymus. IL-2 expression in the fetal thymus was highly transient; a dramatic peak ofiL-2 mRNA accumulation was identified at day 14.5 of gestation and maximal IL-2 protein production was observed 12 hours later, after which both IL-2 mRNA and protein levels rapidly decreased. Significantly, the presence of IL-2 expressing cells in the day 14-15 fetal thymus was not contingent on the generation of T-cell receptor (TcR) positive cells. The second class of IL-2 producing cells was also detectable in the fetal thymus (cells found in this class represented a minority subset of IL-2 producers in the fetal thymus) but persist in the thymus during later stages of development and after birth. Intrathymic IL-2 producers in postnatal animals were located in the subcapsular region and cortex, indicating that these cells reside in the same areas where immature T cells are consigned. The frequency of IL-2 expressing cells in the postnatal thymus was extremely low, indicating that induction of IL-2 expression and protein synthesis are indicative of a rare activation event. Unlike the fetal class of intrathymic IL-2 producers, the presence of IL-2 producing cells in the postnatal thymus was dependent on to the generation of TcR+ cells. Subsequent examination of intrathymic IL-2 production in mutant postnatal mice unable to produce either αβ or γδ T cells showed that postnatal IL-2 producers in the thymus belong to both αβ and γδ lineages. Additionally, further studies indicated that IL-2 synthesis by immature αβ -T cells depends on the expression of bonafide TcR αβ-heterodimers. Taken altogether, IL-2 production in the postnatal thymus relies on the generation of αβ or γδ-TcR^+ cells and induction of IL-2 protein synthesis can be linked to an activation event mediated via the TcR.

With regard to tissue specificity of IL-2 gene expression in vivo, analysis of whole body sections obtained from normal neonatal mouse pups by in situ hybridization demonstrated that IL-2 mRNA^+ cells were found in both lymphoid and nonlymphoid tissues with which T cells are associated, such as the thymus (as described above), dermis and gut. Tissues devoid of IL-2 mRNA^+ cells included brain, heart, lung, liver, stomach, spine, spinal cord, kidney, and bladder. Additional analysis of isolated tissues taken from older animals revealed that IL-2 expression was undetectable in bone marrow and in nonactivated spleen and lymph nodes. Thus, it appears that extrathymic IL-2 expressing cells in nonimmunologically challenged animals are relegated to particular epidermal and epithelial tissues in which characterized subsets of T cells reside and thatinduction of IL-2 gene expression associated with these tissues may be a result of T-cell activation therein.

Based on the neonatal in situ hybridization results, a detailed investigation into possible induction of IL-2 expression resulting in IL-2 protein synthesis in the skin and gut revealed that IL-2 expression is induced in the epidermis and intestine and IL-2 protein is available to drive cell proliferation of resident cells and/or participate in immune function in these tissues. Pertaining to IL-2 expression in the skin, maximal IL-2 mRNA accumulation and protein production were observed when resident Vγ_3^+ T-cell populations were expanding. At this age, both IL-2 mRNA^+ cells and IL-2 protein production were intimately associated with hair follicles. Likewise, at this age a significant number of CD3ε^+ cells were also found in association with follicles. The colocalization of IL-2 expression and CD3ε^+ cells suggests that IL-2 expression is induced when T cells are in contact with hair follicles. In contrast, neither IL-2 mRNA nor IL-2 protein were readily detected once T-cell density in the skin reached steady-state proportions. At this point, T cells were no longer found associated with hair follicles but were evenly distributed throughout the epidermis. In addition, IL-2 expression in the skin was contingent upon the presence of mature T cells therein and induction of IL-2 protein synthesis in the skin did not depend on the expression of a specific TcR on resident T cells. These newly disclosed properties of IL-2 expression in the skin indicate that IL-2 may play an additional role in controlling mature T-cell proliferation by participating in the extrathymic expansion of T cells, particularly those associated with the epidermis.

Finally, regarding IL-2 expression and protein synthesis in the gut, IL-2 producing cells were found associated with the lamina propria of neonatal animals and gut-associated IL-2 production persisted throughout life. In older animals, the frequency of IL-2 producing cells in the small intestine was not identical to that in the large intestine and this difference may reflect regional specialization of the mucosal immune system in response to enteric antigen. Similar to other instances of IL-2 gene expression in vivo, a failure to generate mature T cells also led to an abrogation of IL-2 protein production in the gut. The presence of IL-2 producing cells in the neonatal gut suggested that these cells may be generated during fetal development. Examination of the fetal gut to determine the distribution of IL-2 producing cells therein indicated that there was a tenfold increase in the number of gut-associated IL-2 producers at day 20 of gestation compared to that observed four days earlier and there was little difference between the frequency of IL-2 producing cells in prenatal versus neonatal gut. The origin of these fetally-derived IL-2 producing cells is unclear. Prior to the immigration of IL-2 inducible cells to the fetal gut and/or induction of IL-2 expression therein, IL-2 protein was observed in the fetal liver and fetal omentum, as well as the fetal thymus. Considering that induction of IL-2 protein synthesis may be an indication of future functional capability, detection of IL-2 producing cells in the fetal liver and fetal omentum raises the possibility that IL-2 producing cells in the fetal gut may be extrathymic in origin and IL-2 producing cells in these fetal tissues may not belong solely to the T lineage. Overall, these results provide increased understanding of the nature of IL-2 producing cells in the gut and how the absence of IL-2 production therein and in fetal hematopoietic tissues can result in the acute pathology observed in IL-2 deficient animals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Despite the complexity of biological networks, we find that certain common architectures govern network structures. These architectures impose fundamental constraints on system performance and create tradeoffs that the system must balance in the face of uncertainty in the environment. This means that while a system may be optimized for a specific function through evolution, the optimal achievable state must follow these constraints. One such constraining architecture is autocatalysis, as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence of a tradeoff between error minimization and stability. We also show that additional complexity in the network results in increased robustness. Ribosome synthesis is also autocatalytic where ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, slows down response, and also constrains the system’s performance. On a larger scale, transcriptional regulation of whole organisms also follows architectural constraints and this can be seen in the differences between bacterial and yeast transcription networks. We show that the degree distributions of bacterial transcription network follow a power law distribution while the yeast network follows an exponential distribution. We then explored the evolutionary models that have previously been proposed and show that neither the preferential linking model nor the duplication-divergence model of network evolution generates the power-law, hierarchical structure found in bacteria. However, in real biological systems, the generation of new nodes occurs through both duplication and horizontal gene transfers, and we show that a biologically reasonable combination of the two mechanisms generates the desired network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the cell, the binding of proteins to specific sequences of double helical DNA is essential for controlling the processes of protein synthesis (at the level of DNA transcription) and cell proliferation (at the level of DNA replication). In the laboratory, the sequence-specific DNA binding/cleaving properties of restriction endonuclease enzymes (secreted by microorganisms to protect them from foreign DNA molecules) have helped to fuel a revolution in molecular biology. The strength and specificity of a protein:DNA interaction depend upon structural features inherent to the protein and DNA sequences, but it is now appreciated that these features (and therefore protein:DNA complexation) may be altered (regulated) by other protein:DNA complexes, or by environmental factors such as temperature or the presence of specific organic molecules or inorganic ions. It is also now appreciated that molecules much smaller than proteins (including antibiotics of molecular weight less than 2000 and oligonucleotides) can bind to double-helical DNA in sequence-specific fashion. Elucidation of structural motifs and microscopic interactions responsible for the specific molecular recognition of DNA leads to greater understanding of natural processes and provides a basis for the design of novel sequence-specific DNA binding molecules. This thesis describes the synthesis and DNA binding/cleaving characteristics of molecules designed to probe structural, stereochemical, and environmental factors that regulate sequence-specific DNA recognition.

Chapter One introduces the DNA minor groove binding antibiotics Netropsin and Distamycin A, which are di- and tri(N-methylpyrrolecarboxamide) peptides, respectively. The method of DNA affinity cleaving, which has been employed to determine DNA binding properties of designed synthetic molecules is described. The design and synthesis of a series of Netropsin dimers linked in tail-to-tail fashion (by oxalic, malonic, succinic, or fumaric acid), or in head-to-tail fashion (by glycine, β-alanine, and γ-aminobutanoic acid (Gaba)) are presented. These Bis(Netropsin)s were appended with the iron-chelating functionality EDTA in order to make use of the technique of DNA affinity cleaving. Bis(Netropsin)-EDTA compounds are analogs of penta(N-methylpyrrolecarboxamide)-EDTA (P5E), which may be considered a head-to-tail Netropsin dimer linked by Nmethylpyrrolecarboxamide. Low- and high-resolution analysis of pBR322 DNA affinity cleaving by the iron complexes of these molecules indicated that small changes in the length and nature of the linker had significant effects on DNA binding/cleaving efficiency (a measure of DNA binding affinity). DNA binding/cleaving efficiency was found to decrease with changes in the linker in the order β-alanine > succinamide > fumaramide > N-methylpyrrolecarboxamide > malonamide >glycine, γ-aminobutanamide > oxalamide. In general, the Bis(Netropsin)-EDTA:Fe compounds retained the specificity for seven contiguous A:T base pairs characteristic of P5E:Fe binding. However, Bis(Netropsin)Oxalamide- EDTA:Fe exhibited decreased specificity for A:T base pairs, and Bis(Netropsin)-Gaba-EDT A:Fe exhibited some DNA binding sites of less than seven base pairs. Bis(Netropsin)s linked with diacids have C2-symmmetrical DNA binding subunits and exhibited little DNA binding orientation preference. Bis(Netropsin)s linked with amino acids lack C2-symmetrical DNA binding subunits and exhibited higher orientation preferences. A model for the high DNA binding orientation preferences observed with head-to-tail DNA minor groove binding molecules is presented.

Chapter Two describes the design, synthesis, and DNA binding properties of a series of chiral molecules: Bis(Netropsin)-EDTA compounds with linkers derived from (R,R)-, (S,S)-, and (RS,SR)-tartaric acids, (R,R)-, (S,S)-, and (RS,SR)-tartaric acid acetonides, (R)- and (S)-malic acids, N ,N-dimethylaminoaspartic acid, and (R)- and (S)-alanine, as well as three constitutional isomers in which an N-methylpyrrolecarboxamide (P1) subunit and a tri(N-methylpyrrolecarboxamide)-EDTA (P3-EDTA) subunit were linked by succinic acid, (R ,R)-, and (S ,S)-tartaric acids. DNA binding/cleaving efficiencies among this series of molecules and the Bis(Netropsin)s described in Chapter One were found to decrease with changes in the linker in the order β-alanine > succinamide > P1-succinamide-P3 > fumaramide > (S)-malicamide > N-methylpyrrolecarboxamide > (R)-malicamide > malonamide > N ,N-dimethylaminoaspanamide > glycine = Gaba = (S,S)-tartaramide = P1-(S,S)-tanaramide-P3 > oxalamide > (RS,SR)-tartaramide = P1- (R,R)-tanaramide-P3 > (R,R)-tartaramide (no sequence-specific DNA binding was detected for Bis(Netropsin)s linked by (R)- or (S)-alanine or by tartaric acid acetonides). The chiral molecules retained DNA binding specificity for seven contiguous A:T base pairs. From the DNA affinity cleaving data it could be determined that: 1) Addition of one or two substituents to the linker of Bis(Netropsin)-Succinamide resulted in stepwise decreases in DNA binding affinity; 2) molecules with single hydroxyl substituents bound DNA more strongly than molecules with single dimethylamino substituents; 3) hydroxyl-substituted molecules of (S) configuration bound more strongly to DNA than molecules of (R) configuration. This stereochemical regulation of DNA binding is proposed to arise from the inherent right-handed twist of (S)-enantiomeric Bis(Netropsin)s versus the inherent lefthanded twist of (R)-enantiomeric Bis(Netropsin)s, which makes the (S)-enantiomers more complementary to the right-handed twist of B form DNA.

Chapter Three describes the design and synthesis of molecules for the study of metalloregulated DNA binding phenomena. Among a series of Bis(Netropsin)-EDTA compounds linked by homologous tethers bearing four, five, or six oxygen atoms, the Bis(Netropsin) linked by a pentaether tether exhibited strongly enhanced DNA binding/cleaving in the presence of strontium or barium cations. The observed metallospecificity was consistent with the known affinities of metal cations for the cyclic hexaether 18-crown-6 in water. High-resolution DNA affinity cleaving analysis indicated that DNA binding by this molecule in the presence of strontium or barium was not only stronger but of different sequence-specificity than the (weak) binding observed in the absence of metal cations. The metalloregulated binding sites were consistent with A:T binding by the Netropsin subunits and G:C binding by a strontium or barium:pentaether complex. A model for the observed positive metalloregulation and novel sequence-specificity is presented. The effects of 44 different cations on DNA affinity cleaving by P5E:Fe were examined. A series of Bis(Netropsin)-EDTA compounds linked by tethers bearing two, three, four, or five amino groups was also synthesized. These molecules exhibited strong and specific binding to A:T rich regions of DNA. It was found that the iron complexes of these molecules bound and cleaved DNA most efficiently at pH 6.0-6.5, while P5E:Fe bound and cleaved most efficiently at pH 7.5-8.0. Incubating the Bis(Netropsin) Polyamine-EDTA:Fe molecules with K2PdCl4 abolished their DNA binding/cleaving activity. It is proposed that the observed negative metalloregulation arises from kinetically inert Bis(Netropsin) Polyamine:Pd(II) complexes or aggregates, which are sterically unsuitable for DNA complexation. Finally, attempts to produce a synthetic metalloregulated DNA binding protein are described. For this study, five derivatives of a synthetic 52 amino acid residue DNA binding/cleaving protein were produced. The synthetic mutant proteins carried a novel pentaether ionophoric amino acid residue at different positions within the primary sequence. The proteins did not exhibit significant DNA binding/cleaving activity, but they served to illustrate the potential for introducing novel amino acid residues within DNA binding protein sequences, and for the development of the tricyclohexyl ester of EDTA as a superior reagent for the introduction of EDT A into synthetic proteins.

Chapter Four describes the discovery and characterization of a new DNA binding/cleaving agent, [SalenMn(III)]OAc. This metal complex produces single- and double-strand cleavage of DNA, with specificity for A:T rich regions, in the presence of oxygen atom donors such as iodosyl benzene, hydrogen peroxide, or peracids. Maximal cleavage by [SalenMn(III)]OAc was produced at pH 6-7. A comparison of DNA singleand double-strand cleavage by [SalenMn(III)]+ and other small molecules (Methidiumpropyl-EDTA:Fe, Distamycin-EDTA:Fe, Neocarzinostatin, Bleomycin:Fe) is presented. It was found that DNA cleavage by [SalenMn(III)]+ did not require the presence of dioxygen, and that base treatment of DNA subsequent to cleavage by [SalenMn(III)]+ afforded greater cleavage and alterations in the cleavage patterns. Analysis of DNA products formed upon DNA cleavage by [SalenMn(III)] indicated that cleavage was due to oxidation of the sugar-phosphate backbone of DNA. Several mechanisms consistent with the observed products and reaction requirements are discussed.

Chapter Five describes progress on some additional studies. In one study, the DNA binding/cleaving specificities of Distamycin-EDTA derivatives bearing pyrrole N-isopropyl substituents were found to be the same as those of derivatives bearing pyrrole N-methyl substituents. In a second study, the design of and synthetic progress towards a series of nucleopeptide activators of transcription are presented. Five synthetic plasmids designed to test for activation of in vitro run-off transcription by DNA triple helix-forming oligonucleotides or nucleopeptides are described.

Chapter Six contains the experimental documentation of the thesis work.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bio-orthogonal non-canonical amino acid tagging (BONCAT) is an analytical method that allows the selective analysis of the subset of newly synthesized cellular proteins produced in response to a biological stimulus. In BONCAT, cells are treated with the non-canonical amino acid L-azidohomoalanine (Aha), which is utilized in protein synthesis in place of methionine by wild-type translational machinery. Nascent, Aha-labeled proteins are selectively ligated to affinity tags for enrichment and subsequently identified via mass spectrometry. The work presented in this thesis exhibits advancements in and applications of the BONCAT technology that establishes it as an effective tool for analyzing proteome dynamics with time-resolved precision.

Chapter 1 introduces the BONCAT method and serves as an outline for the thesis as a whole. I discuss motivations behind the methodological advancements in Chapter 2 and the biological applications in Chapters 2 and 3.

Chapter 2 presents methodological developments that make BONCAT a proteomic tool capable of, in addition to identifying newly synthesized proteins, accurately quantifying rates of protein synthesis. I demonstrate that this quantitative BONCAT approach can measure proteome-wide patterns of protein synthesis at time scales inaccessible to alternative techniques.

In Chapter 3, I use BONCAT to study the biological function of the small RNA regulator CyaR in Escherichia coli. I correctly identify previously known CyaR targets, and validate several new CyaR targets, expanding the functional roles of the sRNA regulator.

In Chapter 4, I use BONCAT to measure the proteomic profile of the quorum sensing bacterium Vibrio harveyi during the time-dependent transition from individual- to group-behaviors. My analysis reveals new quorum-sensing-regulated proteins with diverse functions, including transcription factors, chemotaxis proteins, transport proteins, and proteins involved in iron homeostasis.

Overall, this work describes how to use BONCAT to perform quantitative, time-resolved proteomic analysis and demonstrates that these measurements can be used to study a broad range of biological processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After artificial activation or fertilization of non-nucleate fragments or eggs of the sea urchin, the mitochondria actively synthesize RNA. The RNA made in non-nucleate fragments is shown to be mostly single stranded and to be associated primarily with the low speed pellet of centrifuged cellular homogenates.

Protein synthesis is observed in non-nucleate fragments in the presence or absence of the mitochondrial RNA synthesis: it is found to be qualitatively similar but quantitatively less in the absence of the RNA synthesis. The continued syntheses of proteins in the non-nucleate fragments in the absence of mitochondrial RNA synthesis provides additional evidence for the presence of a stable messenger RNA component in the unfertilized sea urchin egg.

Since the uptake or actinomycin D was found to be inhibited by the presence of a fertilization membrane, ethidium bromide, at 10 μgs/ml, is used as an effective inhibitor of RNA synthesis in non-nucleate fragments and in early cleavage stage embryos. However, this same concentration of ethidium bromide is found to be only partially effective in blocking RNA synthesis at the mesenchyme blastula stage of development.

Low concentrations of ethidium bromide (2 and 5 μgs/ml) are found not to be lethal but to be capable of producing moderate developmental defects. In the presence of concentrations of ethidium bromide adequate to inhibit all the mitochondrial RNA synthesis (10 μgs/ml of ethidium bromide), from fertilization on, the embryos do not cleave beyond the 4-8 cell stages. When similar concentrations of ethidium bromide are added at an early mesenchyme blastula stage, the embryos do not gastrulate but continue to swim for more than 24 additional hours (adequate for control embryos to develop to a late prism stage). These results lead to the conclusion that mitochondrial RNA synthesis may be very essential for normal development to occur.

DNA is synthesized in the non-nucleate fragments of sea urchin eggs. None of the newly synthesized DNA is found in the closed circular form. When phenol extracted directly from the fragments, the DNA is found to sediment at approximately 38 and 27s in sucrose gradients but neither of these size classes could be found associated with the isolated mitochondria. The template for the synthesis of DNA in non-nucleate fragments remains unknown.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Part I. Complexes of Biological Bases and Oligonucleotides with RNA

The physical nature of complexes of several biological bases and oligonucleotides with single-stranded ribonucleic acids have been studied by high resolution proton magnetic resonance spectroscopy. The importance of various forces in the stabilization of these complexes is also discussed.

Previous work has shown that purine forms an intercalated complex with single-stranded nucleic acids. This complex formation led to severe and stereospecific broadening of the purine resonances. From the field dependence of the linewidths, T1 measurements of the purine protons and nuclear Overhauser enhancement experiments, the mechanism for the line broadening was ascertained to be dipole-dipole interactions between the purine protons and the ribose protons of the nucleic acid.

The interactions of ethidium bromide (EB) with several RNA residues have been studied. EB forms vertically stacked aggregates with itself as well as with uridine, 3'-uridine monophosphate and 5'-uridine monophosphate and forms an intercalated complex with uridylyl (3' → 5') uridine and polyuridylic acid (poly U). The geometry of EB in the intercalated complex has also been determined.

The effect of chain length of oligo-A-nucleotides on their mode of interaction with poly U in D20 at neutral pD have also been studied. Below room temperatures, ApA and ApApA form a rigid triple-stranded complex involving a stoichiometry of one adenine to two uracil bases, presumably via specific adenine-uracil base pairing and cooperative base stacking of the adenine bases. While no evidence was obtained for the interaction of ApA with poly U above room temperature, ApApA exhibited complex formation of a 1:1 nature with poly U by forming Watson-Crick base pairs. The thermodynamics of these systems are discussed.

Part II. Template Recognition and the Degeneracy of the Genetic Code

The interaction of ApApG and poly U was studied as a model system for the codon-anticodon interaction of tRNA and mRNA in vivo. ApApG was shown to interact with poly U below ~20°C. The interaction was of a 1:1 nature which exhibited the Hoogsteen bonding scheme. The three bases of ApApG are in an anti conformation and the guanosine base appears to be in the lactim tautomeric form in the complex.

Due to the inadequacies of previous models for the degeneracy of the genetic code in explaining the observed interactions of ApApG with poly U, the "tautomeric doublet" model is proposed as a possible explanation of the degenerate interactions of tRNA with mRNA during protein synthesis in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reconhecida como agente de doença humana em 1982, E.coli enterohemorrágica (EHEC) pode causar diarréia sanguinolenta, colite hemorrágica e síndrome hemolítica urêmica (SHU). EHEC constitui um subgrupo especialmente virulento das E.coli produtoras de toxina de Shiga (Stx). O fator crítico da sua virulência é a toxina Shiga, capaz de interromper a síntese proteica da célula eucariótica. São conhecidos dois subgrupos de Stx, Stx1 e Stx2. Stx1 possui duas variantes Stx1c e Stx1d. Stx2 possui muitas variantes. Estudos epidemiológicos sugerem que cepas com os perfis toxigênicos Stx2 ou Stx2/Stx2c seriam mais frequentemente associadas a pacientes com SHU. Além da expressão de Stx, EHEC do sorotipo O157:H7 colonizam a mucosa intestinal induzindo a formação de lesões denominadas attaching/effacing (A/E). Para a produção da lesão A/E, é necessária a presença de uma ilha de patogenicidade cromossômica denominada LEE, composta por cinco operons, LEE 1 a LEE5. Em LEE 5 são codificadas a adesina intimina e o seu receptor Tir, o qual é translocado por um sistema de secreção tipo III (SSTT) e em LEE 4 são codificadas as proteínas secretadas EspA,B e D. Em EHEC O157:H7 são descritos muitos fatores de virulência, codificados em ilhas de patogenicidade, no cromossomo e no megaplasmídio pO157. Bovinos são o principal reservatório deste patógeno e alimentos de origem bovina e produtos contaminados com fezes de bovinos são causadores de surtos epidêmicos. Em nosso país EHEC O157:H7 é isolada do reservatório animal mas é muito rara a sua ocorrência em doença humana. Notamos que nas cepas bovinas predomina Stx2c, enquanto nas cepas humanas predomina o perfil toxigenico Stx2/Stx2c. Quanto a interação com enterocitos humanos cultivados in vitro (linhagem Caco-2), verificamos que tanto cepas bovinas quanto humanas mostram idêntica capacidade de invadir e persistir no compartimento intracelular das células Caco-2. No entanto, em comparação com as cepas humanas, as cepas bovinas mostram uma reduzida capacidade de produzir lesões A/E. Empregamos qPCR para aferir a transcrição de três diferentes locus (eae, espA e tir) situados nos operons LEE4 e LEE5 de cepas bovinas e humanas, durante a infecção de células Caco-2. Verificamos diferenças na expressão dos genes, especialmente espA, entre cepas bovinas e humanas com maior expressão para estas ultimas, em linha com os achados dos testes FAS. Através de clonagem e expressão de proteínas recombinantes, purificamos as proteínas Eae, EspA e Tir e obtivemos anticorpos específicos, empregados para acompanhar a sua expressão ao longo da infecção de células Caco-2, por imunofluorescencia. Verificamos que as três proteínas são detectadas tanto em cepas bovinas quanto humanas, mas nestas ultimas, a marcação é precoce e torna-se mais intensa com o avanço da infecção. Nossos resultados indicam que cepas EHEC O157:H7 isoladas do reservatório bovino em nosso país apresentam diferenças importantes em relação ao perfil toxigenico e a capacidade de indução de lesões A/E, características apontadas na literatura como relevantes para a virulência do micro-organismo. Por outro lado, nossos achados quanto a capacidade de invadir e multiplicar-se no interior de enterócitos pode explicar a persistência do patógeno no reservatório animal e a sua capacidade de transmissão horizontal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrophoretic and serological studies of foot muscle protein of three species of Cerithiacea (Telescopium telescopium, Cerithidea fluviatilis and C. obtusum) were carried out to understand their relationships. Living specimens were collected from mud flats and mangrove swamps off Portonovo. Polyacrylamide electrophoresis of proteins from foot muscle extract of T. telescopium, C. fluviatilis and C. obtusum showed that the former had a different densitometric profile as well as more number of protein bands; but the later two species showed a closer related pattern as well as lesser number of protein bands. At the same time these two species are distinguished from each other in their total number of bands and Rf values. Immunological studies using micro-Ouchterlony double diffusion tests which absorbed antiserum indicated that C. fluviatilis and C. obtusum were more closely related as revealed by an identity reactions than T. telesopium as shown by non-identity reactions. Results are discussed in relation to ecological and morphological adaptations

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Twenty three small indigenous fish species (SIS) in the size range of 3-18 cm were analyzed for proximate composition and minerals (Ca and P) content to evaluate their nutritive value. The moisture content of different species ranged between 71.00 and 81.94%. In general, small sized fishes showed higher moisture content. The muscle protein content among the species varied widely (16.16-22.28%). In general, the muscle protein content of fishes showed higher value than the whole carcass protein content. The carcass lipid content varied between 1.87 and 9.55% and showed an inverse relationship with the moisture content. The gross energy content ranged from 19.51-27.30 KJ/g on dry matter basis. In the present study, the calcium and phosphorus contents ranged between 0.85-3.20% and 1.01-3.29% respectively. The calcium and phosphorus ratio (Ca/P) varied between 0.44 and 2.00. From the nutritional point of view, it shows that the SIS are good source of protein and minerals especially calcium and phosphorus

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study document effects of short-term (96h) sublethal levels of copper, cadmium and their mixture on the amino acid composition of postlarvae of the penaeid shrimp, P.monodon and P.penicillatus . All experimental conditions were kept constant, temperature between 25-27•C and salinity 21-22 ppt. The estimated LD50 for Cu was 200 ug/L, for Cd 177.5 ug/L and for Cu.Cd mixture 250ug/L. In P. penicillatus at the same concentration of each metal, there was significant reduction in amino acid content, which was 8.01% higher than the control. Almost similar reduction in some amino acids was observed in P.monodon. At the maximum concentration of 400 ug/L, cadmium caused higher reduction in amino acid composition than did copper. Thus, amino acid composition may be regarded as a sensitive biochemical indicator of Cu and Cd toxicity because of the effect of these metals on protein synthesis, a signal of physiological stress in marine organisms subjected to heavy metal pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of salinity (0, lO and 20%o, water temperature 28 ± l oC) on food consumption and growth of juvenile Nile tilapia, Oreochromis niloticus L. (9.94 ± 0.15 g) were investigated by feeding group of 20 fish at 2% body weight day. Individual food consumption was measured using X-radiography. There were no significant differences in growth or white muscle protein concentrations among groups. During feed deprivation, weight loss was similar for fish held at O%o and 10 %o salinity, but after 7 days over 50% of the fish maintained at 20%o salinity developed lesions covering 5-25% of the body. No significant relationships were observed between individual specific growth rates and food consumption rates within the groups. The fish in all salinity groups showed a negative correlation between specific growth rate and food conversion ratio. The coefficient of variation for wet weight specific food consumption and the mean share of meal for each fish were used as a measure of social hierarchy strength. A negative correlation was observed between coefficient of variation in food consumption and mean share of meal. The social hierarchy structure was similar in all salinities; 25% of the fish were dominant (18.29% above an equal share of meal) and 30% were subordinate (16.19% below an equal share of meal) and the remainder 45% fish fed theoretical share of meal (MSM, 5.26%).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biochemical techniques designed to compare species on the basis of protein differences were started by NUTTALL (1904) who used immunological methods to compare the serum of humans with that of other primates. Since then more refined techniques have led to better results at the protein level in taxonomy, The analyses of proteins are considered to be the simplest indirect approach to understanding the structure and function of the genetic material, deoxyribonucleic acid (DNA). Interest in these analyses arises because of the close relationship between protein structure and gene structure. Thus by comparing the properties of homologous proteins from different taxa one is in essence comparins their genes (GORMAN er al., 1971). It is now an established fact that genetic information coded in molecules of DNA is translated through a series of reactions in the structure of proteins which form the principal morphological units of the animal body at the molecular level of organization (SIBLEY, 1952). A convenient method of comparing molecular differences between species is to measure the electrophoretic mobility of proteins in a starch gel medium (ASPINWALL and TSUYUKI, 1968) or acrylamide gel (RAYMOND and WEINTRAUB, 1959; BOUCK and BALL, 1968). Proteins with enzymatic properties can be compared on the basis of catalytic activity in the presence or absence of inhibitors (KAPLAN et al., 1959); BAILEY et al., t 1970). A combination of gel electrophoresis and histochemical enzyme detection techniques (HUNTER and MARKERT, 1957) makes it possible to combine electrophoretic mobility anti catalytic activity comparison, Enzyme patterns exhibited in starch gel or acrylamide gel have been used to classify different species. BOUCK and BALL (1968)working with lactate dehydrogenase in species of Trout found that each Trout species had LDH pattern characterbtic of that species. ASPINIWALL and TSUYUKI (1968) used muscle protein electrophoretic patterns to identify hybrid fishes. TSUYUKI and ROBERTS (1963) and TSUYUKI et al. (1964-65) found that myogen protein patterns in fishes were species specific. The myogen patterns within one family were remarkably parallel with the existing morphometric classification and these patterns constituted a single criterion by which the fishes could be identified. The fish used in these investigations were collected from shallow waters (10 metres) of Lake Victoria in two areas, Jinja and Kisumu, using gillnets and beach-seines. The study included ten specimens of each of the following specIes: (l) Haplochromis michaeli (2) Haploehromis obems (3) Astatoreochromis ulluaudi (4) Tilapia zillii and (5) Tilapia nilotica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

dUTPase (DUT) is a ubiquitous and important enzyme responsible for regulating levels of dUTP. Here, an iridovirus DUT was identified and characterized from Rana grylio virus (RGV) which is a pathogen agent in pig frog. The DUT encodes a protein of 164aa with a predicted molecular mass of 17.4 kDa, and its transcriptional initiation site was determined by 5'RACE to start from the nucleotide A at 15 nt upstream of the initiation codon ATG. Sequence comparisons and multiple alignments suggested that RGV DUT was quite similar to other identified DUTs that function as homotrimers. Phylogenetic analysis implied that DUT horizontal transfers might have occurred between the vertebrate hosts and iridoviruses. Furthermore, its temporal expression pattern during RGV infection course was characterized by RT-PCR and Western blot analysis. It begins to transcribe and translate as early as 4 h postinfection (p.i.), and remains detectable at 48 h p.i. DUT-EGFP fusion protein was observed in the cytoplasm of pEGFP-N3-Dut transfected EPC cells. Immunofluorescence also confirmed DUT cytoplasm localization in RGV-infected cells. Using drug inhibition analysis by a de novo protein synthesis inhibitor (cycloheximide) and a viral DNA replication inhibitor (cytosine arabinofuranoside), RGV DUT was classified as an early (E) viral gene during the in vitro infection. Moreover, RGV DUT overexpression was shown that there was no effect on RGV replication by viral replication kinetics assay. (c) 2006 Published by Elsevier B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hormogonium, which was thought to play an important role in the dispersal and survival of these microorganisms in their natural habitats, is a distinguishable developmental stage of heterocystous cyanobacteria. The present study examined the effects of different light conditions and sugars on the differentiation of Nostoc sphaeroides Kutzing to the hormogonia stage. Results showed that differentiation of hormogonia was light dependent in the absence of sugar, but that close to 100% of cyanobacteria differentiated to hormogonia in the presence of glucose or sucrose, irrespective of the light conditions. This differentiation was inhibited, even in the presence of sugars, upon application of an inhibitor of respiration. Following the testing of different sugars, the effects of different lights were examined. It was found that 5 10 μ mol.m(-2)• s(-1) photon flux density was optimal for hormogonia differentiation. One hundred percent differentiation was obtained with white light irradiation, in contrast with irradiation with green light (80% differentiation) and red light (0-10% differentiation). Although they showed different efficiencies in inducing hormogonia differentiation in N. sphaeroides, the green and red radiation did not display antagonistic effects. When the additional aspect of time dependence was investigated through the application of different light radiations and an inhibitor of protein synthesis, it was found that the initial 6 h of the differentiation process was crucial for hormogonia differentiation. Taken together, these results show that hormogonia differentiation in N. sphaeroides is either a photoregulated or an energy dependent process.