992 resultados para MEDICIONES DE TARGET STRENGTH
Resumo:
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC50 values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.
Resumo:
Trypanosomiasis is caused by Trypanosoma species which affect both human and animal populations and pose a major threat to developing countries. The incidence of animal trypanosomiasis is on the rise. Surra is a type of animal trypanosomiasis, caused by Trypanosoma evansi, and has been included in priority list B of significant diseases by the World Organization of Animal Health (OIE). Control of surra has been a challenge due to the lack of effective drugs and vaccines and emergence of resistance towards existing drugs. Our laboratory has previously implicated Heat shock protein 90 (Hsp90) from protozoan parasites as a potential drug target and successfully demonstrated efficacy of an Hsp90 inhibitor in cell culture as well as a pre-clinical mouse model of trypanosomiasis. This article explores the role of Hsp90 in the Trypanosoma life cycle and its potential as a drug target. It appears plausible that the repertoire of Hsp90 inhibitors available in academia and industry may have value for treatment of surra and other animal trypanosomiasis.
Resumo:
A combined set of thermo-mechanical steps recommended for high strength beta Ti alloy are homogenization, deformation, recrystallization, annealing and ageing steps in sequence. Recrystallization carried out above or below beta transus temperature generates either beta annealed (lath type morphology of alpha) or bimodal (lath+globular morphology of alpha) microstructure. Through variations in heat treatment parameters at these processing steps, wide ranges of length scales of features have been generated in both types of microstructures in a near beta Ti alloy, Ti-5Al-5Mo-5V-3Cr (Ti-5553). 0.2% Yield strength (YS) has been correlated to various microstructural features and associated heat treatment parameters. Relative importance of microstructural features in influencing YS has been identified. Process parameters at different steps have been identified and recommended for attaining different levels of YS for this near beta Ti alloy. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Plastic deformation and strength of Ti-6Al-4V (Ti64) alloyed with minor additions of B at cryogenic temperatures were investigated through unnotched and notched tensile tests at 20 and 77 K Marked microstructural refinement that occurs with the trace addition of B to Ti64 was exploited for examining the role of microstructural length scales on the cryogenic plastic deformation. The tensile tests were complemented with detailed microstructural characterisation using transmission electron microscopy and electron back scattered diffraction imaging of the deformed specimens. Experimental results show that the addition of 0.30 wt% and above of B to Ti64 reduces ductility, and in turn enhances the notch sensitivity to the extent that those alloys become unsuitable for low temperature applications. However, the addition of similar to 0.10 wt% B is beneficial in enhancing the low temperature strength. An examination of the yield strength variation at various temperatures reveals that at 77 K, the colony size determines the yield strength of the alloy, just as it does at room temperature; implying dislocation-mediated plasticity continues to dominate up to 77 K At 20 K however, twinning dominates the flow response, with the activation of {11 (2) over bar1} and {5 (6) over bar1 (3) over bar} twinning in addition to {10 (1) over bar2} in the base alloy resulting in enhanced ductility of it as compared to either B-modified alloys at 20 K or the base alloy itself at 77 K The observation of a reasonable correlation between the lath aspect ratio, given by the colony-to-lath thickness ratios, and yield strength variation at 20 K suggests that coarse colony size in the base alloy allows for the activation of additional twinning mechanisms. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (tau) on silicone based hydrophobic surfaces was similar to 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Polypharmacology is beginning to emerge as an important concept in the field of drug discovery. However, there are no established approaches to either select appropriate target sets or design polypharmacological drugs. Here, we propose a structural-proteomics approach that utilizes the structural information of the binding sites at a genome-scale obtained through in-house algorithms to characterize the pocketome, yielding a list of ligands that can participate in various biochemical events in the mycobacterial cell. The pocket-type space is seen to be much larger than the sequence or fold-space, suggesting that variations at the site-level contribute significantly to functional repertoire of the organism. All-pair comparisons of binding sites within Mycobacterium tuberculosis (Mtb), pocket-similarity network construction and clustering result in identification of binding-site sets, each containing a group of similar binding sites, theoretically having a potential to interact with a common set of compounds. A polypharmacology index is formulated to rank targets by incorporating a measure of druggability and similarity to other pockets within the proteome. This study presents a rational approach to identify targets with polypharmacological potential along with possible drugs for repurposing, while simultaneously, obtaining clues on lead compounds for use in new drug-discovery pipelines.
Resumo:
This paper proposes a variation of the pure proportional navigation guidance law, called augmented pure proportional navigation, to account for target maneuvers, in a realistic nonlinear engagement geometry, and presents its capturability analysis. These results are in contrast to most work in the literature on augmented proportional navigation laws that consider a linearized geometry imposed upon the true proportional navigation guidance law. Because pure proportional navigation guidance law is closer to a realistic implementation of proportional navigation than true proportional navigation law, and any engagement process is predominantly nonlinear, the results obtained in this paper are more realistic than any available in the literature. Sufficient conditions on speed ratio, navigation gain, and augmentation parameter for capturability, and boundedness of lateral acceleration, against targets executing piecewise continuous maneuvers with time, are obtained. Further, based on a priori knowledge of the maximum maneuver capability of the target, a significant simplification of the guidance law is proposed in this paper. The proposed guidance law is also shown to require a shorter time of interception than standard pure proportional navigation and augmented proportional navigation. To remove chattering in the interceptor maneuver at the end phase of the engagement, a hybrid guidance law using augmented pure proportional navigation and pure proportional navigation is also proposed. Finally, the guaranteed capture zones of standard and augmented pure proportional navigation guidance laws against maneuvering targets are analyzed and compared in the normalized relative velocity space. It is shown that the guaranteed capture zone expands significantly when augmented pure proportional navigation is used instead of pure proportional navigation. Simulation results are given to support the theoretical findings.
Resumo:
The present discussion tries to bring out the importance of clay mineralogical composition of fine-grained soils on their liquid limit behaviour. It reinforces the author's observation that the undrained shear strengths at liquid limit water content and at plastic limit water content are not unique.
Resumo:
The paradox of strength and ductility is now well established and denotes the difficulty of simultaneously achieving both high strength and high ductility. This paradox was critically examined using a cast Al-7% Si alloy processed by high-pressure torsion (HPT) for up to 10 turns at a temperature of either 298 or 445 K. This processing reduces the grain size to a minimum of similar to 0.4 mu m and also decreases the average size of the Si particles. The results show that samples processed to high numbers of HPT turns exhibit both high strength and high ductility when tested at relatively low strain rates and the strain rate sensitivity under these conditions is similar to 0.14 which suggests that flow occurs by some limited grain boundary sliding and crystallographic slip. The results are also displayed on the traditional diagram for strength and ductility and they demonstrate the potential for achieving high strength and high ductility by increasing the number of turns in HPT.
Resumo:
In order to explore the potential use of fly ash and plastic waste in bulk quantities in civil engineering applications, it is necessary to understand the behavior of fly ash and fly ash mixed with plastic waste. These materials are considered as wastes and in this study, it is shown that combination of fly ash and plastic waste is very useful. In this regard, various tests such as classification tests, unconfined compressive strength and compressibility tests, consolidated undrained tests, and California bearing ratio tests were conducted. The results indicated that the inclusion of plastic waste in fly ash is effective in improving the engineering properties of fly ash in terms of compressive strength, shear strength parameters, and CBR values. In order to understand the effect of sample size on the shear strength parameters of fly ash and fly ash mixed with plastic waste, consolidated undrained tests were conducted with sample sizes of 38x76mm and 50x100mm. The results of the tests indicate that the shear strength increases with the increase in sample size. The implication of the use of fly ash mixed with plastic waste in unpaved roads is presented in terms of reduction of carbon print.
Resumo:
The development of high-strength aluminum alloys that can operate at 250 degrees C and beyond remains a challenge to the materials community. In this paper we report preliminary development of nanostructural Al-Cu-Ni ternary alloys containing alpha-Al, binary Al2Cu and ternary Al2Cu4Ni intermetallics. The alloys exhibits fracture strength of similar to 1 GPa with similar to 9% fracture strain at room temperature. At 300 degrees C, the alloy retains the high strength. The reasons for such significant mechanical properties are rationalized by unraveling the roles and response of various microstructural features. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
An as-cast Al-7 % Si alloy was processed by high-pressure torsion (HPT) for up to 10 turns at temperatures of 298 or 445 K. The HPT-processed samples had ultrafine-grained structures and they were tested in tension at room temperature at various strain rates in the range from 1.0 x 10(-4) to 1.0 x 10(-2) s(-1). The contributions of grain boundary sliding (GBS) to the total strain were measured directly using atomic force microscopy. Samples simultaneously showing both high strength and high ductility contained the highest fractions of high-angle grain boundaries (HAGB) and exhibited the highest contributions from GBS, whereas samples showing high strength but low ductility gave negligible values for the sliding contributions. It is concluded that high strength and high ductility require both an ultrafine grain size and a high fraction of HAGB.
Resumo:
This paper presents modification of the derivation of a previously proposed constitutive model for the prediction of stress-strain behavior of municipal solid waste (MSW) incorporating different mechanisms, such as immediate compression under loading, mechanical creep, and time-dependent biodegradation effect. The model is based on critical state soil mechanics incorporating increments in volumetric strains because of elastic, plastic, creep, and biodegradation effects. The improvement introduced in this paper is the modified critical state surface and considers five variable parameters for the estimation of stress-strain behavior of MSW under different loading conditions. In addition, an expression for the strain hardening rule is derived, with considerations of time-dependent mechanical creep and biodegradation effects. The model is validated using results from experimental studies and data from published literature. The results are also compared with the predictions of the stress-strain response obtained from a well-established hyperbolic model. (c) 2014 American Society of Civil Engineers.