489 resultados para MALCEV ALGEBRAS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT
Resumo:
We define the Virasoro algebra action on imaginary Verma modules for affine and construct an analogue of the Knizhnik-Zamolodchikov equation in the operator form. Both these results are based on a realization of imaginary Verma modules in terms of sums of partial differential operators.
Resumo:
We use computer algebra to study polynomial identities for the trilinear operation [a, b, c] = abc - acb - bac + bca + cab - cba in the free associative algebra. It is known that [a, b, c] satisfies the alternating property in degree 3, no new identities in degree 5, a multilinear identity in degree 7 which alternates in 6 arguments, and no new identities in degree 9. We use the representation theory of the symmetric group to demonstrate the existence of new identities in degree 11. The only irreducible representations of dimension <400 with new identities correspond to partitions 2(5), 1 and 2(4), 1(3) and have dimensions 132 and 165. We construct an explicit new multilinear identity for partition 2(5), 1 and we demonstrate the existence of a new non-multilinear identity in which the underlying variables are permutations of a(2)b(2)c(2)d(2)e(2) f.
Resumo:
In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.
Resumo:
Arnold [V.I. Arnold, On matrices depending on parameters, Russian Math. Surveys 26 (2) (1971) 29-43] constructed miniversal deformations of square complex matrices under similarity; that is, a simple normal form to which not only a given square matrix A but all matrices B close to it can be reduced by similarity transformations that smoothly depend on the entries of B. We construct miniversal deformations of matrices under congruence. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This report aims at giving a general overview on the classification of the maximal subgroups of compact Lie groups (not necessarily connected). In the first part, it is shown that these fall naturally into three types: (1) those of trivial type, which are simply defined as inverse images of maximal subgroups of the corresponding component group under the canonical projection and whose classification constitutes a problem in finite group theory, (2) those of normal type, whose connected one-component is a normal subgroup, and (3) those of normalizer type, which are the normalizers of their own connected one-component. It is also shown how to reduce the classification of maximal subgroups of the last two types to: (2) the classification of the finite maximal Sigma-invariant subgroups of centerfree connected compact simple Lie groups and (3) the classification of the Sigma-primitive subalgebras of compact simple Lie algebras, where Sigma is a subgroup of the corresponding outer automorphism group. In the second part, we explicitly compute the normalizers of the primitive subalgebras of the compact classical Lie algebras (in the corresponding classical groups), thus arriving at the complete classification of all (non-discrete) maximal subgroups of the compact classical Lie groups.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Let D be a division ring with center k, and let D-dagger be its multiplicative group. We investigate the existence of free groups in D-dagger, and free algebras and free group algebras in D. We also go through the case when D has an involution * and consider the existence of free symmetric and unitary pairs in D-dagger.
Resumo:
A subspace representation of a poset S = {s(1), ..., S-t} is given by a system (V; V-1, ..., V-t) consisting of a vector space V and its sub-spaces V-i such that V-i subset of V-j if s(i) (sic) S-j. For each real-valued vector chi = (chi(1), ..., chi(t)) with positive components, we define a unitary chi-representation of S as a system (U: U-1, ..., U-t) that consists of a unitary space U and its subspaces U-i such that U-i subset of U-j if S-i (sic) S-j and satisfies chi 1 P-1 + ... + chi P-t(t) = 1, in which P-i is the orthogonal projection onto U-i. We prove that S has a finite number of unitarily nonequivalent indecomposable chi-representations for each weight chi if and only if S has a finite number of nonequivalent indecomposable subspace representations; that is, if and only if S contains any of Kleiner's critical posets. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
We investigate the classical integrability of the Alday-Arutyunov-Frolov model, and show that the Lax connection can be reduced to a simpler 2 x 2 representation. Based on this result, we calculate the algebra between the L-operators and find that it has a highly non-ultralocal form. We then employ and make a suitable generalization of the regularization technique proposed by Mail let for a simpler class of non-ultralocal models, and find the corresponding r- and s-matrices. We also make a connection between the operator-regularization method proposed earlier for the quantum case, and the Mail let's symmetric limit regularization prescription used for non-ultralocal algebras in the classical theory.
Resumo:
The stable singularities of differential map germs constitute the main source of studying the geometric and topological behavior of these maps. In particular, one interesting problem is to find formulae which allow us to count the isolated stable singularities which appear in the discriminant of a stable deformation of a finitely determined map germ. Mond and Pellikaan showed how the Fitting ideals are related to such singularities and obtain a formula to count the number of ordinary triple points in map germs from C-2 to C-3, in terms of the Fitting ideals associated with the discriminant. In this article we consider map germs from (Cn+m, 0) to (C-m, 0), and obtain results to count the number of isolated singularities by means of the dimension of some associated algebras to the Fitting ideals. First in Corollary 4.5 we provide a way to compute the total sum of these singularities. In Proposition 4.9, for m = 3 we show how to compute the number of ordinary triple points. In Corollary 4.10 and with f of co-rank one, we show a way to compute the number of points formed by the intersection between a germ of a cuspidal edge and a germ of a plane. Furthermore, we show in some examples how to calculate the number of isolated singularities using these results.
Resumo:
In the paper, a complete description of the delta-derivations and the delta-superderivations of semisimple finite-dimensional Jordan superalgebras over an algebraically closed field of characteristic p not equal 2 is given. In particular, new examples of nontrivial (1/2)-derivations and odd (1/2)-superderivations are given that are not operators of right multiplication by an element of the superalgebra.