990 resultados para Lymphoid Organ Virus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strong statistical evidence was found for differences in tolerance to natural infections of Tobacco streak virus (TSV) in sunflower hybrids. Data from 470 plots involving 23 different sunflower hybrids tested in multiple trials over 5 years in Australia were analysed. Using a Bayesian Hierarchical Logistic Regression model for analysis provided: (i) a rigorous method for investigating the relative effects of hybrid, seasonal rainfall and proximity to inoculum source on the incidence of severe TSV disease; (ii) a natural method for estimating the probability distributions of disease incidence in different hybrids under historical rainfall conditions; and (iii) a method for undertaking all pairwise comparisons of disease incidence between hybrids whilst controlling the familywise error rate without any drastic reduction in statistical power. The tolerance identified in field trials was effective against the main TSV strain associated with disease outbreaks, TSV-parthenium. Glasshouse tests indicate this tolerance to also be effective against the other TSV strain found in central Queensland, TSV-crownbeard. The use of tolerant germplasm is critical to minimise the risk of TSV epidemics in sunflower in this region. We found strong statistical evidence that rainfall during the early growing months of March and April had a negative effect on the incidence of severe infection with greatly reduced disease incidence in years that had high rainfall during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine Viral Diarrhoea Virus (BVDV) is one of the most serious pathogen, which causes tremendous economic loss to the cattle industry worldwide, meriting the development of improved subunit vaccines. Structural glycoprotein E2 is reported to be a major immunogenic determinant of BVDV virion. We have developed a novel hollow silica vesicles (SV) based platform to administer BVDV-1 Escherichia coli-expressed optimised E2 (oE2) antigen as a nanovaccine formulation. The SV-140 vesicles (diameter 50 nm, wall thickness 6 nm, perforated by pores of entrance size 16 nm and total pore volume of 0.934 cm(3)g(-1)) have proven to be ideal candidates to load oE2 antigen and generate immune response. The current study for the first time demonstrates the ability of freeze-dried (FD) as well as non-FD oE2/SV140 nanovaccine formulation to induce long-term balanced antibody and cell mediated memory responses for at least 6 months with a shortened dosing regimen of two doses in small animal model. The in vivo ability of oE2 (100 mu g)/SV-140 (500 mu g) and FD oE2 (100 mu g)/SV-140 (500 mu g) to induce long-term immunity was compared to immunisation with oE2 (100 mu g) together with the conventional adjuvant Quil-A from the Quillaja saponira (10 mu g) in mice. The oE2/SV-140 as well as the FD oE2/SV-140 nanovaccine generated oE2-specific antibody and cell mediated responses for up to six months post the final second immunisation. Significantly, the cell-mediated responses were consistently high in mice immunised with oE2/SV-140 (1,500 SFU/million cells) at the six-month time point. Histopathology studies showed no morphological changes at the site of injection or in the different organs harvested from the mice immunised with 500 mu g SV-140 nanovaccine compared to the unimmunised control. The platform has the potential for developing single dose vaccines without the requirement of cold chain storage for veterinary and human applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hendra virus (HeV) causes highly lethal disease in horses and humans in the eastern Australian states of Queensland (QLD) and New South Wales (NSW), with multiple equine cases now reported on an annual basis. Infection and excretion dynamics in pteropid bats (flying-foxes), the recognised natural reservoir, are incompletely understood. We sought to identify key spatial and temporal factors associated with excretion in flying-foxes over a 2300 km latitudinal gradient from northern QLD to southern NSW which encompassed all known equine case locations. The aim was to strengthen knowledge of Hendra virus ecology in flying-foxes to improve spillover risk prediction and exposure risk mitigation strategies, and thus better protect horses and humans. Monthly pooled urine samples were collected from under roosting flying-foxes over a three-year period and screened for HeV RNA by quantitative RT-PCR. A generalised linear model was employed to investigate spatiotemporal associations with HeV detection in 13,968 samples from 27 roosts. There was a non-linear relationship between mean HeV excretion prevalence and five latitudinal regions, with excretion moderate in northern and central QLD, highest in southern QLD/northern NSW, moderate in central NSW, and negligible in southern NSW. Highest HeV positivity occurred where black or spectacled flying-foxes were present; nil or very low positivity rates occurred in exclusive grey-headed flying-fox roosts. Similarly, little red flying-foxes are evidently not a significant source of virus, as their periodic extreme increase in numbers at some roosts was not associated with any concurrent increase in HeV detection. There was a consistent, strong winter seasonality to excretion in the southern QLD/northern NSW and central NSW regions. This new information allows risk management strategies to be refined and targeted, mindful of the potential for spatial risk profiles to shift over time with changes in flying-fox species distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: In 2012, giant tiger shrimp Penaeus monodon originally sourced from Joseph Bonaparte Gulf in northern Australia were examined in an attempt to identify the cause of elevated mortalities among broodstock at a Queensland hatchery. Nucleic acid extracted from ethanol-fixed gills of 3 individual shrimp tested positive using the OIE YHV Protocol 2 RT-PCR designed to differentiate yellow head virus (YHV1) from gill-associated virus (GAV, synonymous with YHV2) and the OIE YHV Protocol 3 RT-nested PCR designed for consensus detection of YHV genotypes. Sequence analysis of the 794 bp (Protocol 2) and 359 bp (Protocol 3) amplicons from 2 distinct regions of ORF1b showed that the yellow-head-complex virus detected was novel when compared with Genotypes 1 to 6. Nucleotide identity on the Protocol 2 and Protocol 3 ORF1b sequences was highest with the highly pathogenic YHV1 genotype (81 and 87%, respectively) that emerged in P. monodon in Thailand and lower with GAV (78 and 82%, respectively) that is enzootic to P. monodon inhabiting eastern Australia. Comparison of a longer (725 bp) ORF1b sequence, spanning the Protocol 3 region and amplified using a modified YH30/31 RT-nPCR, provided further phylogenetic evidence for the virus being distinct from the 6 described YHV genotypes. The virus represents a unique seventh YHV genotype (YHV7). Despite the mortalities observed, the role of YHV7 remains unknown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the complete genome sequences of a novel polerovirus from Trifolium subterraneum (subterranean clover) and Cicer arietinum (chickpea) and compare these to a partial viral genome sequence obtained from Macroptilium lathyroides (phasey bean). We propose the name phasey bean mild yellows virus for this novel polerovirus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein-protein interactions play a Crucial role in Virus assembly and stability. With the view of disrupting capsid assembly and capturing smaller oligomers, interfacial residue mutations were carried Out in the coat protein gene of Sesbania Mosaic Virus, a T=3 ss (+) RNA plant virus. A single point mutation of a Trp 170 present at the five-fold interface of the virus to a charged residue (Glu or Lys) arrested assembly of virus like particles and resulted in stable Soluble dimers of the capsid Protein. The X-ray crystal structure of one of the isolated dimer mutants - rCP Delta N65W170K was determined to a resolution of 2.65 angstrom. Detailed analysis of the dimeric mutant protein structure revealed that a number of Structural changes take place, especially in the loop and interfacial regions during the course of assembly. The isolated chiller was ``more relaxed'' than the dimer found in the T=3 or T=1 capsids. The isolated dimer does not bind Ca2+ ion and consequently four C-terminal residues are disordered. The FG loop, which interacts with RNA in the Virus, has different conformations in the isolated dimer and the intact Virus Suggesting its flexible nature and the conformational changes that accompany assembly. The isolated choler mutant was much less stable when compared to the assembled capsids, suggesting the importance of inter-subunit interactions and Ca2+ mediated interactions in the stability of the capsids. With this study, SeMV becomes the first icosahedral virus for which X-ray crystal Structures of T=3, T=1 capsids as well as a smaller oligomer of the capsid protein have been determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isonicotinic acid hydrazide (isoniazid), one of the most potent antitubercular drugs, was recently shown, in our laboratory, to form two different complexes with copper, depending upon the oxidation state of the metal ion. Both the complexes have been shown to possess antiviral activity against Rous sarcoma virus, an RNA tumor virus. The antiviral activity of the complexes has been attributed to their ability to inhibit the endogenous reverse transcriptase activity of RSV. More recent studies in our laboratory indicate that both these complexes inhibit both endogenous and exogenous reactions. As low a final concentration as 50 μM of the cupric and the cuprous complexes inhibits the endogenous reaction to the extent of 93 and 75 per cent respectively. Inhibition of the exogenous reaction varies with the templates. The inhibition can be reversed by either β-mercaptoethanol or ethylene-diamine-tetra-acetic acid. The specificity of this inhibition has been ascertained by using a synthetic primer-template, −(dG)not, vert, similar15−(rCm)n, which is highly specific for reverse transcriptases. The inhibition is found to be template specific. The studies carried out, using various synthetic primer-templates, show the inhibition of both the steps of reverse transcription by the copper complexes of isoniazid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All positive-strand RNA viruses utilize cellular membranes for the assembly of their replication complexes, which results in extensive membrane modification in infected host cells. These alterations act as structural and functional scaffolds for RNA replication, providing protection for the viral double-stranded RNA against host defences. It is known that different positive-strand RNA viruses alter different cellular membranes. However, the origin of the targeted membranes, the mechanisms that direct replication proteins to specific membranes and the steps in the formation of the membrane bound replication complex are not completely understood. Alphaviruses (including Semliki Forest virus, SFV), members of family Togaviridae, replicate their RNA in association with membranes derived from the endosomal and lysosomal compartment, inducing membrane invaginations called spherules. Spherule structures have been shown to be the specific sites for RNA synthesis. Four replication proteins, nsP1-nsP4, are translated as a polyprotein (P1234) which is processed autocatalytically and gives rise to a membrane-bound replication complex. Membrane binding is mediated via nsP1 which possesses an amphipathic α-helix (binding peptide) in the central region of the protein. The aim of this thesis was to characterize the association of the SFV replication complex with cellular membranes and the modification of the membranes during virus infection. Therefore, it was necessary to set up the system for determining which viral components are needed for inducing the spherules. In addition, the targeting of the replication complex, the formation site of the spherules and their intracellular trafficking were studied in detail. The results of current work demonstrate that mutations in the binding peptide region of nsP1 are lethal for virus replication and change the localization of the polyprotein precursor P123. The replication complex is first targeted to the plasma membrane where membrane invaginations, spherules, are induced. Using a specific regulated endocytosis event the spherules are internalized from the plasma membrane in neutral carrier vesicles and transported via an actin-and microtubule-dependent manner to the pericentriolar area. Homotypic fusions and fusions with pre-existing acidic organelles lead to the maturation of previously described cytopathic vacuoles with hundreds of spherules on their limiting membranes. This work provides new insights into the membrane binding mechanism of SFV replication complex and its role in the virus life cycle. Development of plasmid-driven system for studying the formation of the replication complex described in this thesis allows various applications to address different steps in SFV life cycle and virus-host interactions in the future. This trans-replication system could be applied for many different viruses. In addition, the current work brings up new aspects of membranes and cellular components involved in SFV replication leading to further understanding in the formation and dynamics of the membrane-associated replication complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several organs of the embryo develop as appendages of the ectoderm, the outermost layer of the embryo. These organs include hair follicles, teeth and mammary glands, which all develop as a result of reciprocal tissue interactions between the surface epithelium and the underlying mesenchyme. Several signalling molecules regulate ectodermal organogenesis the most important ones being Wnts, fi broblast growth factors (Fgfs), transforming growth factor -βs (Tgf-βs) including bone morphogenetic proteins (Bmps), hedgehogs (Hhs), and tumour necrosis factors (Tnfs). This study focuses on ectodysplasin (EDA), a signalling molecule of the TNF superfamily. The effects of EDA are mediated by its receptor EDAR, an intracellular adapter protein EDARADD, and downstream activation of the transcription factor nuclear factor kappa-B (NF-кB). Mice deficient in Eda (Tabby mice), its receptor Edar (downless mice) or Edaradd (crinkled mice) show identical phenotypes characterised by defective ectodermal organ development. These mouse mutants serve as models for the human syndrome named hypohidrotic ectodermal dysplasia (HED) that is caused by mutations either in Eda, Edar or Edaradd. The purpose of this study was to characterize the ectodermal organ phenotype of transgenic mice overexpressing of Eda (K14-Eda mice), to study the role of Eda in ectodermal organogenesis using both in vivo and in vitro approaches, and to analyze the potential redundancy between the Eda pathway and other Tnf pathways. The results suggest that Eda plays a role during several stages of ectodermal organ development from initiation to differentiation. Eda signalling was shown to regulate the initiation of skin appendage development by promoting appendageal cell fate at the expense of epidermal cell fate. These effects of Eda were shown to be mediated, at least in part, through the transcriptional regulation of genes that antagonized Bmp signalling and stimulated Shh signalling. It was also shown that Eda/Edar signalling functions redundantly with Troy, which encodes a related TNF receptor, during hair development. This work has revealed several novel aspects of the function of the Eda pathway in hair and tooth development, and also suggests a previously unrecognized role for Eda in mammary gland development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth is a fundamental aspect of life cycle of all organisms. Body size varies highly in most animal groups, such as mammals. Moreover, growth of a multicellular organism is not uniform enlargement of size, but different body parts and organs grow to their characteristic sizes at different times. Currently very little is known about the molecular mechanisms governing this organ-specific growth. The genome sequencing projects have provided complete genomic DNA sequences of several species over the past decade. The amount of genomic sequence information, including sequence variants within species, is constantly increasing. Based on the universal genetic code, we can make sense of this sequence information as far as it codes proteins. However, less is known about the molecular mechanisms that control expression of genes, and about the variations in gene expression that underlie many pathological states in humans. This is caused in part by lack of information about the second genetic code that consists of the binding specificities of transcription factors and the combinatorial code by which transcription factor binding sites are assembled to form tissue-specific and/or ligand-regulated enhancer elements. This thesis presents a high-throughput assay for identification of transcription factor binding specificities, which were then used to measure the DNA binding profiles of transcription factors involved in growth control. We developed ‘enhancer element locator’, a computational tool, which can be used to predict functional enhancer elements. A genome-wide prediction of human and mouse enhancer elements generated a large database of enhancer elements. This database can be used to identify target genes of signaling pathways, and to predict activated transcription factors based on changes in gene expression. Predictions validated in transgenic mouse embryos revealed the presence of multiple tissue-specific enhancers in mouse c- and N-Myc genes, which has implications to organ specific growth control and tumor type specificity of oncogenes. Furthermore, we were able to locate a variation in a single nucleotide, which carries a susceptibility to colorectal cancer, to an enhancer element and propose a mechanism by which this SNP might be involved in generation of colorectal cancer.