956 resultados para Low Speed.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aberrations of the acoustic wave front, caused by spatial variations of the speed-of-sound, are a main limiting factor to the diagnostic power of medical ultrasound imaging. If not accounted for, aberrations result in low resolution and increased side lobe level, over all reducing contrast in deep tissue imaging. Various techniques have been proposed for quantifying aberrations by analysing the arrival time of coherent echoes from so-called guide stars or beacons. In situations where a guide star is missing, aperture-based techniques may give ambiguous results. Moreover, they are conceptually focused on aberrators that can be approximated as a phase screen in front of the probe. We propose a novel technique, where the effect of aberration is detected in the reconstructed image as opposed to the aperture data. The varying local echo phase when changing the transmit beam steering angle directly reflects the varying arrival time of the transmit wave front. This allows sensing the angle-dependent aberration delay in a spatially resolved way, and thus aberration correction for a spatially distributed volume aberrator. In phantoms containing a cylindrical aberrator, we achieved location-independent diffraction-limited resolution as well as accurate display of echo location based on reconstructing the speed-of-sound spatially resolved. First successful volunteer results confirm the clinical potential of the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate summer and fall residency and habitat selection by gray whales, Eschrichtius robustus, together with the biomass of benthic amphipod prey on the coastal feeding grounds along the Chukotka Peninsula. Thirteen gray whales were instrumented with satellite transmitters in September 2006 near the Chukotka Peninsula, Russia. Nine transmitters provided positions from whales for up to 81 days. The whales travelled within 5 km of the Chukotka coast for most of the period they were tracked with only occasional movements offshore. The average daily travel speeds were 23 km/day (range 9-53 km/day). Four of the whales had daily average travel speeds <1 km/day suggesting strong fidelity to the study area. The area containing 95% of the locations for individual whales during biweekly periods was on average 13,027 km**2 (range 7,097-15,896 km**2). More than 65% of all locations were in water <30 m, and between 45 and 70% of biweekly kernel home ranges were located in depths between 31 and 50 m. Benthic density of amphipods within the Bering Strait at depths <50 m was on average ~54 g wet wt/m**2 in 2006. It is likely that the abundant benthic biomass is more than sufficient forage to support the current gray whale population. The use of satellite telemetry in this study quantifies space use and movement patterns of gray whales along the Chukotka coast and identifies key feeding areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthropogenic carbon dioxide emissions induce ocean acidification, thereby reducing carbonate ion concentration, which may affect the ability of calcifying organisms to build shells. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living L. retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient in two factorial, randomized experiments investigating shell degradation, swimming behavior and survival. In addition, to investigate shell degradation without any physiologic influence, one perturbation experiments using only shells of dead pteropods was performed. Lower pH reduced shell mass whereas shell dissolution increased with pCO2. Interestingly, shells of dead organisms had a higher degree of dissolution than shells of living individuals. Mortality of Limacina retroversa was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim upwards. Results suggest that the energy cost of maintaining ion balance and avoiding sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract shell dissolution (in high pCO2 scenario), exceed the available energy budget of this organism causing the pteropods to change swimming behavior and begin to collapse. Since L. retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Shelf Seas of the Arctic are known for their large sea-ice production. This paper presents a comprehensive view of the Kara Sea sea-ice cover from high-resolution numerical modeling and space-borne microwave radiometry. As given by the latter the average polynya area in the Kara Sea takes a value of 21.2 × 10**3 km**2 ± 9.1 × 10**3 km**2 for winters (Jan.-Apr.) 1996/97 to 2000/01, being as high as 32.0 × 10**3 km**2 in 1999/2000 and below 12 × 10**3 km**2 in 1998/99. Day-to-day variations of the Kara Sea polynya area can be as high as 50 × 10**3 km**2. For the seasons 1996/97 to 2000/01 the modeled cumulative winter ice-volume flux out of the Kara Sea varied between 100 km**3/a and 350 km**3/a. Modeled high (low) ice export coincides with a high (low) average and cumulative polynya area, and with a low (high) sea-ice compactness in the Kara Sea from remote sensing data, and with a high (low) sea-ice drift speed across its northern boundary derived from independent model data for the winters 1996/97 to 2000/01.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m/d (salps: 800-1200 m/d; ctenophores: 1200-1500 m/d; scyphozoans: 1000-1100 m d; pyrosomes: 1300 m/d). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper the capabilities of ultra low power FPGAs to implement Wake-up Radios (WuR) for ultra low energy Wireless Sensor Networks (WSNs) are analyzed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the more common approaches based on ASICs or microcontrollers. In this context, energy efficiency is a key aspect, considering that usually the instant power consumption is considered a figure of merit, more than the total energy consumed by the application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper an implementation of a Wake up Radio(WuR) with addressing capabilities based on an ultra low power FPGA for ultra low energy Wireless Sensor Networks (WSNs) is proposed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the traditional approaches based on ASICs or microcontrollers, for communication frame decoding and communication data control.