949 resultados para Localization of functions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : A lot of information can be obtained on proteins when proteomics methods are used. In our study, we aimed to characterize complexes containing pro-apoptotic proteins by different proteomics methods and finally focused on PIDD (p53-induced protein with a death domain), for which the most interesting results were obtained. PIDD has been shown to function as a molecular switch between genotoxic stress-induced apoptotis and genotoxic stress-induced cell survival through NF-κB activation. To exert these two functions, PIDD forms alternate complexes respectively with caspase2 and CRADD on one hand and RIP 1 and NEMO on the other hand. The first part of our study focuses on the processing of PIDD. PIDD full length (FL) is constitutively cleaved into three fragments, an N-terminal one (PIDD-N) and two fragments containing the C-terminus (PIDD-C and PIDD-CC). Localization of the two PIDD cleavage sites by mass spectrometry (MS) allowed to understand that PIDD is probably not cleaved by proteases but is subject to protein (self-)splicing and also to map the PIDD-N, PIDD-C and PIDD-CC fragments exactly. Further characterization of these three fragments by Tinel et al. (Tinel et al., 2007) showed that PIDD-C is involved in activation of an apoptotic pathway while PIDD-CC is involved in NF-κB activation. We also found that PIDD is subject to proline-directed phosphorylation at two serine residues in PIDD-N, the regulatory fragment of PIDD. The second part of the study aimed at identifying by proteomics techniques proteins that co-purify with PIDD and therefore are putative cellular interaction partners. In this respect we analyzed samples obtained in different conditions or with different PIDD constructs corresponding to processed fragments. This allowed us to identify a large number of potential interactors for PIDD. For example, by comparing data obtained from PIDD-C and PIDD-FL affinity purifications, we found that the Hsp90 chaperone system interacts strongly with PIDD-N. In the third part of this study, we developed methods to selectively and rapidly quantify by MS proteins of interest in PIDD affinity purifications or negative controls. Using these tools we detected significant changes in PIDD-FL-copurifying proteins treated by heat shock. Overall, our studies provide informative data on the processing of PIDD and its possible involvement in several molecular pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary Skin is the essential interface between our body and its environment; not only does it prevent water loss and protect us from external insults it also plays an essential role in the central nervous system acting as a major sense organ primarily for touch and pain. The main cell type present in skin, keratinocyte, undergoes a differentiation process leading to the formation of this protecting barrier. This work is intended to contribute to the understanding of how keratinocyte differentiates and skin functions. To do this, we studied two genetic skin diseases: Erythrokeratodermia variabilis and Mal de Meleda. Our approach was to examine the expression and localization of proteins implicated in these two pathologies in normal and diseased tissues and to determine the influence of mutant proteins at the molecular and cellular levels. Connexins are major components of gap junctions, channels allowing direct communication between cells. Our laboratory has identified mutations in both connexin 30.3 (Cx30.3) and 31 (Cx31) to be causally involved in erythrokeratodermia variabilis (EKV), an autosomal dominant disorder of keratinization. In the first chapter, we show a new mutation of Cx31, L209P-Cx31, in 3 EKV patients, extending the field of EKV-causing mutations although the mechanism by which connexin mutations lead to the disease is unclear. In the second chapter, we studied the effect of F137L-Cx30.3 on expression, trafficking and localization of cotransfected Cx31 and Cx30.3 in connexin-deficient HeLa cells. The F137 amino acid, highly conserved in connexin family, is oriented towards the channel pore and F137L mutation in either Cx30.3 or Cx31 lead to EKV. As two genes can lead to EKV when mutated, our hypothesis was that Cx31 and Cx30.3 might cooperate at a molecular level. We were able to demonstrate a physical interaction between Cx31 and Cx30.3. The presence of F137L-Cx30.3 disturbed the trafficking of both connexins, less connexins were integrated into gap junctions and thus, the coupling between cell was diminished. Connexins formed in the presence of F137L-Cx30.3 are degraded at their exit from the endoplasmic reticulum. In conclusion, our results indicate that the genetic heterogeneity of EKV is due to mutations in two interacting proteins. F137L-Cx30.3 has a dominant negative effect and affects Cx31, disturbing cellular communication in epidermal cells. Mal de Meleda is an autosomal recessive inflammatory and a keratotic palmoplantar skin disorder due to mutations in SLURP1 (secreted LY6/PLAUR-related protein 1). SLURP1 belongs to the LY6/PLAUR family of proteins and has the particularity of being secreted instead of being GPI-anchored. The high degree of structural similarity between SLURP1 and the three fingers motif of snake neurotoxins and LYNX 1-C suggests that this protein could interact with the neuronal acetylcholine receptors. In the third chapter, we show that SLURP1 potentiates responses of the a7 nicotinic acetylcholine receptor (nAchR) to acetylcholine. These results identify SLURP1 as a secreted epidermal neuromodulator that is likely to be essential for palmoplantar skin. In the fourth chapter, we show that SLURP1 is expressed in the granular layer of the epidermis but is absent from skin biopsies of Mal de Meleda patients. SLURP1 is also present in secretions such as sweat, tears or saliva. An in vitro analysis on two mutant of SLURP-I demonstrates that W15R-SLURP1 is absent in cells while G86R-SLURP1 is expressed and secreted, suggesting that SLURP1 can lead to the disease by either an absent or an abnormal protein. Finally, in the fifth chapter, we analyse the expression and biological properties of other LY6/PLAUR members, clustered around SLURP] on chromosome 8. Their GPI-anchored or secreted status were analysed in vitro. SLURP1, LYNX1-A and -B are secreted while LYPDC2 and LYNX 1-C are GPI anchored. Three of these proteins are expressed in the epidermis and in cultured keratinocytes. These results suggest that these LY6/PLAUR members may have an important role in skin homeostasis. Résumé Résumé La peau est la barrière essentielle entre notre corps et l'environnement, nous protégeant des agressions extérieures, de la déshydratation et assurant aussi un rôle dans le système nerveux central en tant qu'organe du toucher et de la douleur. Le principal type de cellules présent dans la peau est le kératinocyte qui suit un processus de différenciation aboutissant à la formation de cette barrière protectrice. Ce travail est destiné à comprendre la différenciation des kératinocytes et le fonctionnement de la peau. Pour cela, nous avons étudié deux maladies génodermatoses : l'Erthrokeratodermia Variabilis (EKV) et le Mal de Meleda. Nous avons examiné l'expression et la localisation des protéines impliquées dans ces deux pathologies dans des tissus normaux et malades puis déterminé l'influence des protéines mutantes aux niveaux moléculaires et cellulaires. Les connexines (Cx) sont les composants majeurs des jonctions communicantes, canaux permettant la communication directe entre les cellules. Notre laboratoire a identifié des mutations dans les Cx30.3 et Cx31 comme responsables de l'EKV, génodermatose de transmission autosomique dominante. Dans le ler chapitre, nous décrivons une nouvelle mutation de Cx31, L209-Cx31, et contribuons à l'établissement du catalogue des mutations de Cx31 entraînant cette maladie. Cependant, le mécanisme par lequel les mutations de Cx31 et C3x0.3 provoquent l'EKV est inconnu. Dans le 2ème chapitre, nous étudions les effets de la mutation F137L-Cx30.3 sur l'expression, le trafic et la localisation des Cx31 et Cx30.3 transfectées dans des cellules HeLa, déficientes en connexines. Comme deux gènes peuvent causer une EKV quand ils sont mutés, notre hypothèse était que Cx31 et Cx30.3 pourraient coopérer au niveau moléculaire. Nous avons montré l'existence d'une interaction physique entre ces deux connexines. La présence de la mutation F137L-Cx30.3 perturbe le trafic des deux connexines, moins de connexines sont intégrées dans les jonctions communicantes et donc le couplage entre les cellules est diminué. Les connexons formés en présence de cette mutation sont dégradés à leur sortie du réticulum endoplasmique. En conclusion, nos résultats indiquent que l'hétérogénéité génétique de EKV est due à des mutations dans deux protéines qui interagissent. F137L-Cx30.3 a un effet dominant négatif et affecte Cx31, perturbant la communication entre les cellules épidermiques. Le Mal de Meleda est une maladie récessive de la peau palmoplantaire due à des mutations dans SLURP1. SLURP1 appartient à la famille des protéines contenant un domaine LY6/PLAUR et a la particularité d'être sécrétée. La grande homologie de structure existant entre SLURP1, les neurotoxines de serpent et LYNX1-C suggère que la protéine pourrait interagir avec des récepteurs à acétylcholine (Ach). Dans le 3ème chapitre, nous montrons que SLURP1 module la réponse à l'Ach du récepteur nicotinique α7. Ces résultats identifient SLURP1 comme un neuromodulateur épidermique sécrété, probablement essentiel pour la peau palmoplantaire. Dans le 4ème chapitre, nous montrons que SLURP1 est exprimé dans la couche granuleuse de l'épiderme et qu'il est absent des biopsies des patients. SLURP1 a aussi été détecté dans des sécrétions telles que la sueur, les lamies et la salive. Une analyse in vitro de deux mutants de SLURP1 a montré que W15R-SLURP1 est absent des cellules tandis que G86R-SLURP1 est exprimé et sécrété, suggérant qu'une absence ou une anomalie de SLURP1 peuvent causer la maladie. Finalement, dans le 5ème chapitre, nous analysons l'expression et les propriétés biologiques d'autres membres de la famille LY6/PLAUR localisés autour de SLURP1 sur le chromosome 8. Leur statut de protéines sécrétées ou liées à la membrane par une ancre GPI est analysé in vitro. SLURP1, LYNXI-A et -B sont sécrétées alors que LYPDC2 et LYNX1-C sont liés à la membrane. Trois de ces protéines sont exprimées dans l'épiderme et dans des kératinocytes cultivés. Ces résultats suggèrent que la famille LY6/PLAUR pourrait avoir un rôle important dans l'homéostasie de la peau.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell polarity is an essential property of most cell types and relies on a dynamic cytoskeleton of actin filaments and microtubules. In rod-shaped S. pombe cells microtubules are organized along the length of the cell and transport polarity factors to cell tips to regulate cell polarity. An important cell polarity factor is the protein Tea4, which is responsible for correct cell morphogenesis and bipolar growth. During my research I confirmed the known transport mechanism of Tea4 and I also showed alternative localization and anchoring mechanisms at the cell ends. Tea4 contains a conserved SH3 domain, the function of which was unknown and my results show that the SH3 domain of Tea4 is essential for Tea4 function in vivo. First, cells with tea4SH3 mutations show aberrant cell shapes and monopolar growth patterns similar to tea4A and in addition SH3 domain is important for proper localization of multiple cell polarity proteins. Second, I showed that Tea4 associates with Type 1 Phosphatase Dis2 through both its SH3 domain and an RVxF motif. Tea4 also binds the DYRK kinase Pomi through its SH3 domain. In addition Tea4 is proposed to promote the local dephosphorylation of Pomi by Dis2 to induce the formation of a cortical gradient from cell ends essential for cell size homeostasis. Polarized growth is also controlled by cell tip-localized Cdc42. This Rho- family GTPase is activated by the Guanine Exchange Factors Gef1 and Scd1 and inactivated by the Rho GTPase Activating Protein Rga4. In this study, I investigated the mechanisms of how Tea4 promotes Cdc42 activation. My work suggests that Tea4 promotes the local exclusion of Rga4, which in turn allows the accumulation of active Cdc42, which may result in growth. Exclusion of Rga4 by Tea4 is likely to be mediated by Dis2-dependent dephosphorylation. These results suggest a molecular pathway that links the microtubule- associated factor Tea4 with Cdc42 to promote cell polarization and morphogenesis. - La polarité cellulaire est une propriété essentielle de la plupart des types cellulaires et s'appuie sur une dynamique des cytosquelettes d'actine et de microtubules. Dans les cellules en forme de bâtonnet de S. pombe les microtubules sont alignés selon l'axe longitudinal de la cellule et les facteurs de polarité transportés aux extrémité cellulaires afin de réguler la polarité cellulaire. Un facteur important de polarité cellulaire est la protéine Tea4, qui est responsable de la morphogenèse des cellules et leur croissance bipolaire. Au cours de mes recherches, j'ai confirmé les mécanismes connus de transport de Tea4 et j'ai aussi mis en évidence d'autres mechanismes de localisation et d'ancrage de Tea4 aux extrémités cellulaires. Tea4 contient un domaine SH3 conservé, dont la fonction était inconnue et mes résultats montrent que le domaine SH3 est essentiel pour la fonction de Tea4 in vivo. Tout d'abord, les cellules avec des mutations tea4sm ont des formes aberrantes et leur croissance est monopolaire de manière similaire au mutant tea4A. De plus ce domaine SH3 est important pour la localisation correcte de plusieurs protéines de polarité cellulaire. Deuxièmement, j'ai montré que Tea4 s'associe avec la Phosphatase de Type-1 Dis2 par son domaine SH3 et un motif RVxF. Tea4 se lie également la kinase DYRK Pomi par son domaine SH3. De plus, Tea4 pourrait favoriser la déphosphorylation locale de Pomi par Dis2 afin d'induire la formation d'un gradient cortical de Pomi essentiel pour l'homéostasie de la longueur des cellules. La croissance polarisée est également contrôlée par la protéine Cdc42 localisée aux extrémités cellulaires. Cette GTPase de la famille de Rho GTPase est activée par les facteurs échange de guanine Gef1 et Scd1 et inactivée par la protéine "Rho GTPase activating" Rga4. Dans cette étude, j'ai étudié les mécanismes d' activation de Cdc42 par Tea4. Mes résultats suggèrent que Tea4 favorise l'exclusion locale de Rga4, ce qui permet l'accumulation de Cdc42 active, nécessaire à la croissance. L' exclusion de Rga4 par Tea4 est vraisemblablement médiée par une déphosphorylation Dis2- dépendente. Ces résultats suggèrent une voie moléculaire qui lie le facteur associé aux microtubules Tea4 à Cdc42 pour promouvoir la polarisation cellulaire et la morphogenèse. - Cell polarity is important for several essential biological functions such as generation of distinct cell fates during development and function of differentiated cells. Defective cell polarity has been related to uncontrolled cell division and subsequently to cancer initiation. Cell polarity depends on a functional cytoskeleton that consists of actin filaments and microtubules, which maintains cell shape, helps cellular motion, enables intracellular protein transport and plays a vital role in cell division. A component of cytoskeleton is microtubules that regulate cell polarization in diverse cell types. During my research, I worked with Schizosaccharomyces pombe, also named fission yeast, a powerful unicellular model organism that allows combination of genetic, biochemical and microscopic analysis for the proper study of cell polarity. Microtubule-associated protein Tea4 is transported to cell tips where it is thought to organize polarized growth. I showed that Tea4 and its evolutionarily conserved SH3 domain play an important role for maintenance of fission yeast cells shape and growth. Furthermore, Tea4 is responsible for the proper localization of multiple polarity proteins and acts as a mediator to control the local activity of an essential polarity regulator called Cdc42. Thus, my results provide a better understanding of the molecular mechanisms that regulate cell polarity. - La polarité cellulaire est importante pour plusieurs fonctions biologiques essentielles telles que la différenciation cellulaires au cours du développement et de la fonction de cellules différenciées. Les défauts de la polarité cellulaire ont été liés à des divisions cellulaires incontrôlées et à l'initiation de tumeur. La polarité cellulaire dépend d'un cytosquelette fonctionnel, qui maintient la forme des cellules, aide à la migration cellulaire, permet le transport intracellulaire des protéines et joue un rôle essentiel dans la division cellulaire. Un composant du cytosquelette est constitué de microtubules qui régissent la polarisation cellulaire dans divers types cellulaires. Au cours de mes recherches, j'ai travaillé avec Schizosaccharomyces pombe, appelé également levure fissipare, un modèle unicellulare puissant qui permet la combinaison de différentes d'approches expérimentales: génétiques, biochimiques et microscopiques pour l'étude de la polarité cellulaire. La protéine Tea4 associée aux microtubules est transportée aux extrémités cellulaires où elle organise la croissance polarisée. J'ai montré que Tea4 et son domaine conservé SH3 jouent un rôle important pour le maintien de la forme des cellules de levure et leur croissance. De plus, Tea4 est responsable de la localisation correcte de multiples facteurs de polarité et agit comme un médiateur pour contrôler l'activité locale d'un régulateur de polarité essentiel appelé Cdc42. Ainsi, mes résultats permettent de mieux comprendre les mécanismes moléculaires qui régulent la polarité cellulaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcineurin is a heterodimeric protein phosphatase complex composed of catalytic (CnaA) and regulatory (CnaB) subunits and plays diverse roles in regulating fungal stress responses, morphogenesis, and pathogenesis. Fungal pathogens utilize the calcineurin pathway to survive in the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making calcineurin a promising antifungal drug target. Here, we review novel findings on calcineurin localization and functions in Aspergillus fumigatus hyphal growth and septum formation through regulation of proteins involved in cell wall biosynthesis. Extensive mutational analysis in the functional domains of A. fumigatus CnaA has led to an understanding of the relevance of these domains for the localization and function of CnaA at the hyphal septum. An evolutionarily conserved novel mode of calcineurin regulation by phosphorylation in filamentous fungi was found to be responsible for virulence in A. fumigatus. This finding of a filamentous fungal-specific mechanism controlling hyphal growth and virulence represents a potential target for antifungal therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Machado-Joseph disease is the most frequently found dominantly-inherited cerebellar ataxia. Over-repetition of a CAG trinucleotide in the MJD1 gene translates into a polyglutamine tract within the ataxin 3 protein, which upon proteolysis may trigger Machado-Joseph disease. We investigated the role of calpains in the generation of toxic ataxin 3 fragments and pathogenesis of Machado-Joseph disease. For this purpose, we inhibited calpain activity in mouse models of Machado-Joseph disease by overexpressing the endogenous calpain-inhibitor calpastatin. Calpain blockage reduced the size and number of mutant ataxin 3 inclusions, neuronal dysfunction and neurodegeneration. By reducing fragmentation of ataxin 3, calpastatin overexpression modified the subcellular localization of mutant ataxin 3 restraining the protein in the cytoplasm, reducing aggregation and nuclear toxicity and overcoming calpastatin depletion observed upon mutant ataxin 3 expression. Our findings are the first in vivo proof that mutant ataxin 3 proteolysis by calpains mediates its translocation to the nucleus, aggregation and toxicity and that inhibition of calpains may provide an effective therapy for Machado-Joseph disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT In S. cerevisiae, the protein phosphatase Cdc14pwt is essential far mitotic exit through its contribution to reducing mitotic CDK activity. But Cdc14pwt also acts as a mare general temporal coordinator of mid and late mitotic events by controlling the partitioning of DNA, microtubule stability and cytokinesis. Cdc14pwt orthologs are well conserved from yeasts to humans, and sequence comparison revealed the presence of three domains, A, B and C, of which A and B form the catalytic domain. Cdc14pwt orthologs are regulated (in part) through cell cycle dependent changes in their localization. Some of them are thought to be kept inactive by sequestration in the nucleolus during interphase. This is the case for flp1pwt, the single identified Cdc14pwt ortholog in the fission yeast S. pombe. In early mitosis, flp1pwt leaves the nucleolus and localizes to the kinetochores, the contractile ring and the mitotic spindle, suggesting that it has multiple substrates and regulates many mitotic processes. flp1D cells show a high chromosome loss rate and septation defects, suggesting a role for flp1wt in the fidelity of chromosome transmission and cytokinesis. The aim of this study is to characterize the mechanisms underlying flp1pwt functions and the control of its activity. A structure-function analysis has revealed that the presence of both A and B domains is required for biological function and for proper flp1pwt mitotic localization. In contrast, the C domain of flp1pwt is responsible for its proper nucleolar localization in G2/interphase. My data suggest that dephosphorylation of substrates by flp1pwt is not necessary for any changes in localization of flp1pwt except that at the medial ring. In that particular case, the catalytic activity of flp1pwt is required for efficient localization, therefore revealing an additional level of regulation. All the functions of flp1pwt assayed to date require its catalytic activity, emphasizing the importance of further identification of its substrates. As described for other orthologs, the capability of selfinteraction and phosphorylation status might help to control flp1pwt activity. My data suggest that flp1pwt forms oligomers in vivo and that phosphorylation is not essential far localization changes of the protein. In addition, the hypophosphorylated form of flp1pwt might be specifically involved in the promotion of cytokinesis. The results of this study suggest that multiple modes of regulation including localization, selfassociation and phosphorylation allow a fine-tuning regulation of flp1pwt phosphatase activity, and more generally that of Cdc14pwt family of phosphatases. RESUME Chez la levure S. cerevisiae, la protéine phosphatase Cdc14pwt est essentielle pour la sortie de mitose du fait de sa contribution dans la réduction d'activité des CDK mitotiques. Comme elle contrôle également le partage de l'ADN, la stabilité des microtubules et la cytokinèse, Cdc14pwt est en fait considérée comme un coordinateur temporel général des évènements de milieu et de fin de mitose. Les orthologues de Cdc14pwt sont bien conservés, des levures jusqu'à l'espèce humaine. Des comparaisons de séquence ont révélé la présence de trois domaines A, B et C, les deux premiers constituant le domaine catalytique. Ils sont régulés (en partie) via des changements dans leur localisation, eux-mêmes dépendants du cycle cellulaire. Plusieurs de ces orthologues sont supposés inactivés par séquestration dans le nucléole en interphase, ce qui est le cas de flp1pwt le seul orthologue de Cdc14pwt identifié chez la levure fissipare S, pombe. En début de mitose, flp1pwt quitte le nucléole et localise au niveau des kinetochores, de l'anneau contractile d'actine et du fuseau mitotique, ce qui laisse supposer de multiples substrats et fonctions. Comme les cellules délétées pour le gène flp1wt présentent un taux élevé de perte de chromosome et des défauts de septation, flp1pwt semble jouer un rôle dans la fidélité de la transmission du matériel génétique et la cytokinèse. Le but de cette étude est de caractériser les mécanismes impliqués dans les fonctions assurées par flp1pwt d'une part, et dans le contrôle de son activité d'autre part. Une analyse structure-fonction a révélé que la présence simultanée des deux domaines A et B est requise pour la fonction biologique de flp1pwt et sa localisation correcte pendant la mitose. Par contre, le domaine C de flp1pwt confère une localisation nucléolaire adéquate en G2/interphase. Mes données suggèrent que la déphosphorylation de substrats par flp1pwt est dispensable pour sa localisation correcte excepté celle à l'anneau médian, qui requiert dans ce cas, l'activité catalytique de flp1pwt, révélant ainsi un niveau de régulation supplémentaire. Toutes les fonctions de flp1 pwt testées jusqu'à présent nécessitent également son activité catalytique, ce qui accentue l'importance de l'identification future de ses substrats. Comme cela a déjà été décrit pour d'autres orthologues, la capacité d'auto-intéraction et le niveau de phosphorylation pourraient contrôler l'activité de flp1pwt. En effet, mes données suggèrent que flp1pwt forme des oligomères in vivo et que la phosphorylation n'est pas essentielle pour les changements de localisation observés pour la protéine. De plus, la forme hypophosphorylée de flp1pwt pourrait être spécifiquement impliquée dans la promotion de la cytokinèse. De multiples modes de régulation incluant la localisation, l'auto-association et la phosphorylation semblent permettre un contrôle fin et subtil de l'activité de la phosphatase flp1pwt, et plus généralement celle des protéines de la famille de Cdc14pwt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The endodermis is a highly conserved cell layer present in the root of all vascular plants, except Lycophytes. This tissue layer establishes a protective diffusion barrier surrounding the vasculature and is expected to prevent passive, uncontrolled flow of nutrients through the root. This barrier property is achieved by the production of Casparian strips (CS), a localized cell wall impregnation of lignin in the anticlinal walls of each endodermal cell, forming a belt-like structure sealing the extracellular space. The CS act as a selective barrier between the external cell layers and the vascular cylinder and are thought to be important in many aspects of root function. For instance, selective nutrient uptake and sequestration from the soil, resistance to different abiotic and biotic stresses are expected to involve functional CS. Although discovered 150 years ago, nothing was known about the genes involved in CS establishment until recently. The use of the model plant Arabidopsis thaliana together with both reverse and forward genetic approaches led to the discovery of an increasing number of genes involved in different steps of CS formation during the last few years. One of these genes encodes SCHENGEN3 (SGN3), a leucine-rich repeat receptor-like kinase (LRR-RLK). SGN3 was discovered first by reverse genetic due to its endodermis-enriched expression, and the corresponding mutant displays strong endodermal permeability of the apoplastic tracer Propidium Iodide (PI) indicative of defective CS. One aim of this thesis is to study the role of SGN3 at the molecular level in order to understand its involvement in establishing an impermeable CS. The endodermal permeability of sgn3 is shown to be the result of incorrect localization of key proteins involved in CS establishment (the "Casparian strip domain proteins", CASPs), leading to non-functional CS interrupted by discontinuities. CASPs localize in the plasma membrane domain subjacent to the CS, named the Casparian Strip membrane Domain (CSD). The CSD discontinuities in sgn3 together with SGN3 localization in close proximity to the CASPs lead to the assumption that SGN3 is involved in the formation of a continuous CSD. In addition, SGN3 might have a second role, acting as a kinase reporting CSD integrity leading to lignin and suberin production in CSD/CS defective plants. Up to now, sgn3 is the strongest and most specific CS mutant available, displaying tracer penetration along the whole length of the seedling root. For this reason, this mutant is well suited in order to characterize the physiological behaviour of CS affected plants. Due to the lack of such mutants in the past, it was not possible to test the presumed functions of CS by using plants lacking this structure. We decided to use sgn3 for this purpose. Surprisingly, sgn3 overall growth is only slightly affected. Nevertheless, processes expected to rely on functional CS, such as water transport through the root, nutrient homeostasis, salt tolerance and resistance to an excess of some nutrients are altered in this mutant. On the other hand, homeostasis for most elements and drought tolerance are not affected in sgn3. It is surprising to observe that homeostatic defects are specific, with a decrease in potassium and an increase in magnesium levels. It indicates a backup system, set up by the plant in order to counteract free diffusion of nutrients into the stele. For instance, potassium shortage in sgn3 upregulates the transcription of potassium influx transport proteins and genes known to be induced by potassium starvation. Moreover, sgn3 mutant is hypersensitive to low potassium conditions. Hopefully, these results about SGN3 will help our understanding of CS establishment at the molecular level. In addition, physiological experiments using sgn3 should give us a framework for future experiments and help us to understand the different roles of CS and their involvement during nutrient radial transport through the root. -- L'endoderme est un tissu présent dans les racines de toutes les plantes vasculaires à l'exception des Lycophytes. Ce tissu établit une barrière protectrice entourant les tissus vasculaires dans le but d'éviter la diffusion passive et incontrôlée des nutriments au travers de la racine. Cette propriété de barrière provient de la production des cadres de Caspary, une imprégnation localisée de lignine des parties anticlinales de la paroi de chaque cellule d'endoderme. Cela donne naissance à un anneau/cadre qui rend étanche l'espace extracellulaire. Les cadres de Caspary agissent comme une barrière sélective entre les couches externes de la racine et le cylindre central et sont supposés être importants dans beaucoup d'aspects du fonctionnement de la racine. Par exemple, l'absorption sélective de nutriments et leur séquestration à partir du sol ainsi que la résistance contre différents stress abiotiques et biotiques sont supposés impliquer des cadres de Caspary fonctionnels. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans Ja formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana ainsi que des approches de génétique inverse et classique ont permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un des ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR-RLK). SGN3 a été découvert en premier par génétique inverse grâce à son expression enrichie dans l'endoderme. Les cadres de Caspary ne sont pas fonctionnels dans le mutant correspondant, ce qui est visible à cause de la perméabilité de l'endoderme au traceur apoplastique Propidium Iodide (PI). Un des objectifs de cette thèse est d'étudier la fonction de SGN3 au niveau moléculaire dans le but de comprendre son rôle dans la formation des cadres de Caspary. J'ai pu démontrer que la perméabilité de l'endoderme du mutant sgn3 est le résultat de la localisation incorrecte de protéines impliquées dans la formation des cadres de Caspary, les "Casparian strip domain proteins" (CASPs). Cela induit des cadres de Caspary non fonctionnels, contenant de nombreuses interruptions. Les CASPs sont localisés à la membrane plasmique dans un domaine sous-jacent les cadres de Caspary appelé Casparian Strip membrane Domain (CSD). Les interruptions du CSD dans le mutant sgn3, ainsi que la localisation de SGN3 à proximité des CASPs nous font penser à un rôle de SGN3 dans l'élaboration d'un CSD ininterrompu. De plus, SGN3 pourrait avoir un second rôle, agissant en tant que kinase reportant l'intégrité du CSD et induisant la production de lignine et de subérine dans des plantes contenant des cadres de Caspary non fonctionnels. Jusqu'à ce jour, sgn3 est le mutant en notre possession le plus fort et le plus spécifique, ayant un endoderme perméable tout le long de la racine. Pour cette raison, ce mutant est adéquat dans le but de caractériser la physiologie de plantes ayant des cadres de Caspary affectés. De manière surprenante, la croissance de sgn3 est seulement peu affectée. Néanmoins, des processus censés nécessiter des cadres de Caspary fonctionnels, comme le transport de l'eau au travers de la racine, l'homéostasie des nutriments, la tolérance au sel et la résistance à l'excès de certains nutriments sont altérés dans ce mutant. Malgré tout, l'homéostasie de la plupart des nutriments ainsi que la résistance au stress hydrique ne sont pas affectés dans sgn3. De manière surprenante, les altérations de l'ionome de sgn3 sont spécifiques, avec une diminution de potassium et un excès de magnésium. Cela implique un système de compensation établi par la plante dans le but d'éviter la diffusion passive des nutriments en direction du cylindre central. Par exemple, le manque de potassium dans sgn3 augmente la transcription de transporteurs permettant l'absorption de cet élément. De plus, des gènes connus pour être induits en cas de carence en potassium sont surexprimés dans sgn3 et la croissance de ce mutant est sévèrement affectée dans un substrat pauvre en potassium. Ces résultats concernant SGN3 vont, espérons-le, aider à la compréhension du processus de formation des cadres de Caspary au niveau moléculaire. De plus, les expériences de physiologie utilisant sgn3 présentées dans cette thèse devraient nous donner une base pour des expériences futures et nous permettre de comprendre mieux le rôle des cadres de Caspary, et plus particulièrement leur implication dans le transport radial des nutriments au travers de la racine. -- Les plantes terrestres sont des organismes puisant l'eau et les nutriments dont elles ont besoin pour leur croissance dans le sol grâce à leurs racines. De par leur immobilité, elles doivent s'adapter à des sols contenant des quantités variables de nutriments et il leur est crucial de sélectionner ce dont elles ont besoin afin de ne pas s'intoxiquer. Cette sélection est faite grâce à un filtre formé d'un tissu racinaire interne appelé endoderme. L'endoderme fabrique une barrière imperméable entourant chaque cellule appelée "cadre de Caspary". Ces cadres de Caspary empêchent le libre passage des nutriments, permettant un contrôle précis de leur passage. De plus, ils sont censés permettre de résister contre différents stress environnementaux comme la sécheresse, la salinité du sol ou l'excès de nutriments. Bien que découverts il y a 150 ans, rien n'était connu concernant les gènes impliqués dans la formation des cadres de Caspary jusqu'à récemment. Durant ces dernière années, l'utilisation de la plante modèle Arabidopsis thaliana a permis la découverte d'un nombre croissant de gènes impliqués à différentes étapes de la formation de cette structure. Un de ces gènes code pour SCHENGEN3 (SGN3), un récepteur kinase "leucine-rich repeat receptor-like kinase" (LRR- RLK). Nous montrons dans cette étude que le gène SGN3 est impliqué dans la formation des cadres de Caspary, et que le mutant correspondant sgn3 a des cadres de Caspary interrompus. Ces interruptions rendent l'endoderme perméable, l'empêchant de bloquer le passage des molécules depuis le sol vers le centre de la racine. En utilisant ce mutant, nous avons pu caractériser la physiologie de plantes ayant des cadres de Caspary affectés. Cela a permis de découvrir que le transport de l'eau au travers de la racine était affecté dans le mutant sgn3. De plus, l'accumulation de certains éléments dans les feuilles de ce mutant est altérée. Nous avons également pu montrer une sensibilité de ce mutant à un excès de sel ou de certains nutriments comme le fer et le manganèse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells couple their growth and division rate in response to nutrient availability to maintain a constant size. This co-ordination happens either at the G1-S or the G2-M transition of the cell cycle. In the rod-shaped fission yeast, size regulation happens at the G2-M transition prior to mitotic commitment. Recent studies have focused on the role of the DYRK-family protein kinase Pom1, which forms gradients emanating from cell poles and inhibits the mitotic activator kinase Cdr2, present at the cell middle. Pom1 was proposed to inhibit Cdr2 until cells reached a critical size before division. However when and where Pom1 inhibits Cdr2 is not clear as medial Pom1 levels do not change during cell elongation. Here I show that Pom1 gradients are susceptible to environmental changes in glucose. Specifically, upon glucose limitation, Pom1 re-localizes from the poles to the cell sides where it delays mitosis through regulating Cdr2. This re-localization occurs due to microtubule de- stabilization and lateral catastrophes leading to transient deposition of the Pom1 gradient nucleator Tea4 along the cell cortex. As Tea4 localization to cell sides is sufficient to recruit Pom1, this explains the mechanism of Pom1 re-localization. Microtubule destabilization and consequently Tea4 and Pom1 spread depends on the activity of the cAMP-dependent Protein Kinase A (PKA/Pka1), as pka1 mutant cells have stable microtubules and retain polar Tea4 and Pom1 under limited glucose. PKA signaling negatively regulates the microtubule rescue factor CLASP/Cls1, thus reducing its ability to stabilize microtubules. Thus PKA signaling tunes CLASP activity to promote microtubule de-stabilization and Pom1 re-localization upon glucose limitation. I show that the side-localized Pom1 delays mitosis and balances the role of the mitosis promoting, mitogen-associated protein kinase (MAPK) protein Sty1. Thus Pom1 re-localization may serve to buffer cell size upon glucose limitation. -- Afin de maintenir une taille constante, les cellules régulent leur croissance ainsi que leur taux de division selon les nutriments disponibles dans le milieu. Dans la levure fissipare, cette régulation de la taille précède l'engagement mitotique et se fait à la transition entre les phases G2 à M du cycle cellulaire. Des études récentes se sont focalisées sur le rôle de la protéine Pom1, membre de la famille des DYRK kinase. Celle-ci forme un gradient provenant des pôles de la cellule et inhibe l'activateur mitotique Cdr2 présent au centre de la cellule. Le model propose que Pom1 inhibe Cdr2 jusqu'à atteindre une taille critique avant la division. Cependant quand et à quel endroit dans la cellulle Pom1 inhibe Cdr2 n'était pas clair car les niveaux médians de Pom1 ne changent pas au cours de la l'élongation des cellules. Dans cette étude, je montre que les gradients de Pom1 sont sensibles aux changements environnementaux du taux de glucose. Plus spécifiquement, en conditions limitantes de glucose, Pom1 se relocalise des pôles de la cellule pour se distribuer sur les côtés de celle-ci. Par conséquent, un délai d'entrée en mitose est observé dû à l'inhibition Cdr2 par Pom1. Cette délocalisation est due à la déstabilisation des microtubules qui va conduire à une déposition transitoire de Tea4, le nucléateur du gradient de Pom1, tout au long du cortex de la cellule. Comme la localisation de Tea4 sur les côtés de la cellule est suffisante pour recruter la protéine Pom1, ceci explique le mécanisme de relocalisation de celle-ci. La déstabilisation des microtubules et par conséquent la diffusion de Tea4 et Pom1 dépendent de l'activité de la protéine kinase A dépendante de l'AMP cyclique (PKA/Pka1). En absence de pka1, la stabilité des microtubules n'est pas affectée ce qui permet la rétention de Tea4 et Pom1 aux pôles de la cellule même en conditions limitantes de glucose. La signalisation via PKA régule négativement le facteur de sauvetage des microtubules CLASP/Cls1 et permet donc de réduire sa fonction de déstabilisation des microtubules. Ainsi la signalisation via PKA affine l'activité des CLASP pour promouvoir la déstabilisation des microtubules et la relocalisation de Pom1 en conditions limitantes de glucose. Je montre que la localisation sur les côtés retarde l'entrée en mitose et compense l'action de la protéine Sty1, connue pour être une MAPK qui induit l'entrée en mitose. Ainsi, la relocalisation de Pom1 pourrait servir à tamponner la taille de la cellule en condition limitantes de glucose. -- Various cell types in the environment such as bacterial, plant or animal cells have a distinct cellular size. Maintaining a constant cell size is important for fitness in unicellular organisms and for diverse functions in multicellular organisms. Cells regulate their size by coordinating their growth rate to their division rate. This coupling is important otherwise cells would get progressively smaller or larger after each successive cell cycle. In their natural environment cells may face fluctuations in the available nutrient supply. Thus cells have to coordinate their division rate to the variable growth rates shown under different nutrient conditions. During my PhD, I worked with a single-celled rod shaped yeast called the fission yeast. These cells are longer when the nutrient supply is abundant and shorter when the nutrient supply is scarce. A protein that senses changes in the external carbon source (glucose) is called Protein Kinase A (PKA). The rod shape of fission yeast cells is maintained thanks to a structural backbone called the cytoskeleton. One of the components of this backbone is called microtubules, which are small tube like structures spanning the length of the cell. They transport a protein called Tea4, which in turn is important for the proper localization of another protein Pom1 to the cell ends. Pom1 helps to maintain proper shape and size of these rod shaped yeast cells. My thesis work showed that upon reduction in the external nutrient (glucose) levels, microtubules become less stable and show an alteration in their organization. A significant percentage of the microtubules contact the side of the cell instead of touching only the cell tip. This leads to the spreading of the protein Pom1 away from the tips all around the cell periphery. This helps fission yeast cells to maintain the proper size required under these conditions of limited glucose supply. I further showed that the protein PKA regulates microtubule stability and organization and thus Pom1 spreading and maintenance of proper cell size. Thus my work led to the discovery of a novel pathway by which fission yeast cells maintain their size under limited supply of glucose. -- Divers types cellulaires dans l'environnement tels que les bactéries, les plantes ou les cellules animales ont une taille précise. Le maintien d'une taille cellulaire constante est importante pour le fitness des organismes unicellulaire ainsi que pour multiples fonctions dans les organismes multicellulaires. Les cellules régulent leur taille en coordonnant le taux de croissance avec le taux de division. Ce couplage est essentiel sinon les cellules deviendraient progressivement plus petites ou plus grandes après chaque cycle cellulaire. Dans leur habitat naturels les cellules peuvent faire face a des fluctuations dans le taux de nutriment disponible. Les cellules doivent donc coordonner leur taux de division aux taux variables de croissances perçus dans les différentes conditions nutritionnels. Pendant ma thèse, j'ai travaillée sur une levure unicellulaire, en forme de bâtonnet, nommé levure fissipare ou levure de fission. La taille de ces cellules est plus grande quand le taux de nutriments est grand et plus courte quand celui-ci est plus faible. Une protéine qui perçoit les changements dans le taux externe de la source de carbone (glucose) est nommée PKA pour protéine kinase A. La forme en bâtonnet de la cellule est due aux caractères structuraux du cytosquelette. Une composante importante de ce cytosquelette sont les microtubules, dont la structures ressemble à des petit tubes qui vont d'un bout à l'autre de la cellule. Ces microtubules transportent une protéine importante nommée Tea4 qui à leur tour importante pour la bonne localisation d'une autre protéine Pom1 aux extrémités de la cellule. La protéine Pom1 aide à maintenir la taille appropriée des levures fissipares. Mon travail de thèse a montré qu'en présence de taux faible de nutriments (glucose) les microtubules deviennent de moins en moins stables et montrent une désorganisation globale. Un pourcentage significatif des microtubules touche les côtés de la cellule aux lieu d'atteindre uniquement les extrémités. Ceci a pour conséquence une diffusion de Pom1 tout au long du cortex de la cellule. Ceci aide les levures fissipares à maintenir la taille appropriée pendant ce stress nutritionnel. De plus, je montre que PKA régule la stabilité et l'organisation des microtubules et par conséquent la diffusion de Pom1 et le maintien d'une taille constante. En conclusion, mon travail a conduit à la découverte d'un nouveau mécanisme par lequel la levure fissipare maintient sa taille dans des conditions limitantes en glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inducible nitric oxide synthase (iNOS) functions as a homodimer. In cell extracts, iNOS molecules partition both in cytosolic and particulate fractions, indicating that iNOS exists as soluble and membrane associated forms. In this study, iNOS features were investigated in human intestinal epithelial cells stimulated with cytokines and in duodenum from mice exposed to flagellin. Our experiments indicate that iNOS is mainly associated with the particulate fraction of cell extracts. Confocal microscopy showed a preferential localization of iNOS at the apical pole of intestinal epithelial cells. In particulate fractions, iNOS dimers were more abundant than in the cytosolic fraction. Similar observations were seen in mouse duodenum samples. These results suggest that, in epithelial cells, iNOS activity is regulated by localization-dependent processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cysteine cathepsin protease activity is frequently dysregulated in the context of neoplastic transformation. Increased activity and aberrant localization of proteases within the tumour microenvironment have a potent role in driving cancer progression, proliferation, invasion and metastasis. Recent studies have also uncovered functions for cathepsins in the suppression of the response to therapeutic intervention in various malignancies. However, cathepsins can be either tumour promoting or tumour suppressive depending on the context, which emphasizes the importance of rigorous in vivo analyses to ascertain function. Here, we review the basic research and clinical findings that underlie the roles of cathepsins in cancer, and provide a roadmap for the rational integration of cathepsin-targeting agents into clinical treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human chorionic gonadotropin (hCG) and luteinizing hormone (LH) are structurally and functionally similar glycoprotein hormones acting through the same luteinizing hormone chorionic gonadotropin receptor (LHCGR). The functions of LH in reproduction and hCG in pregnancy are well known. Recently, the expression of LHCGR has been found in many nongonadal tissues and cancers, and this has raised the question of whether LH/hCG could affect the function or tumorigenesis of these nongonadal tissues. We have also previously generated an hCG expressing mouse model presenting nongonadal phenotypes. Using this model it is possible to improve our understanding of nongonadal action of highly elevated LH/hCG. In the current study, we analyzed the effect of moderately and highly elevated hCG levels on male reproductive development and function. The main finding was the appearance of fetal Leydig cell (FLC) adenomas in prepubertal males. However, the development and differentiation of FLCs were not significantly affected. We also show that the function of hCG is different in FLCs and in adult Leydig cells (ALC), because in the latter cells hCG was not able to induce tumorigenesis. In FLCs, LHCGR is not desensitized or downregulated upon ligand binding. In this study, we found that the testicular expression of two G protein-coupled receptor kinases responsible for receptor desensitization or downregulation is increased in adult testis. Results suggest that the lack of LHCGR desensitization or downregulation in FLCs protect testosterone (Te) synthesis, but also predispose FLCs for LH/hCG induced adenomas. However, all the hCG induced nongonadal changes observed in male mice were possible to explain by the elevated Te level found in these males. Our findings indicate that the direct nongonadal effects of elevated LH/hCG in males are not pathophysiologically significant. In female mice, we showed that an elevated hCG level was able to induce gonadal tumorigenesis. hCG also induced the formation of pituitary adenomas (PA), but the mechanism was indirect. Furthermore, we found two new potential risk factors and a novel hormonally induced mechanism for PAs. Increased progesterone (P) levels in the presence of physiological estradiol (E2) levels induced the formation of PAs in female mice. E2 and P induced the expression and nuclear localization of a known cell-cycle regulator, cyclin D1. A calorie restricted diet was also able to prevent the formation of PAs, suggesting that obesity is able to promote the formation of PAs. Hormone replacement therapy after gonadectomy and hormone antagonist therapy showed that the nongonadal phenotypes observed in hCG expressing female mice were due to ovarian hyperstimulation. A slight adrenal phenotype was evident even after gonadectomy in hCG expressing females, but E2 and P replacement was able to induce a similar phenotype in WT females without elevated LH/hCG action. In conclusion, we showed that the direct effects of elevated hCG/LH action are limited only to the gonads of both sexes. The nongonadal phenotypes observed in hCG expressing mice were due to the indirect, gonadal hormone mediated effects of elevated hCG. Therefore, the gonads are the only physiologically significant direct targets of LHCGR signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le transport et la localisation des ARN messagers permettent de réguler l’expression spatiale et temporelle de facteurs spécifiques impliqués dans la détermination du destin cellulaire, la plasticité synaptique, la polarité cellulaire et la division asymétrique des cellules. Chez S.cerevisiæ, plus de trente transcrits sont transportés activement vers le bourgeon cellulaire. Parmi ces transcrits, l’ARNm ASH1 (asymetric synthesis of HO) est localisé à l’extrémité du bourgeon pendant l’anaphase. Ce processus va entrainer une localisation asymétrique de la protéine Ash1p, qui sera importée uniquement dans le noyau de la cellule fille, où elle entraine le changement de type sexuel. La localisation asymétrique de l’ARNm ASH1, et donc de Ash1p, implique la présence de différents facteurs de localisation. Parmi ces facteurs, les protéines She (She1p/Myo4p, She2p et She3p) et les répresseurs traductionnels (Puf6p, Loc1p et Khd1p) participent à ce mécanisme. La protéine navette She2p est capable de lier l’ARNm ASH1 et va entrainer le ciblage de cet ARNm vers l’extrémité du bourgeon en recrutant le complexe She3p-Myo4p. Des répresseurs traductionnels régulent la traduction de cet ARNm et évitent l’expression ectopique de la protéine Ash1p pendant son transport. Alors que la fonction cytoplasmique de She2p sur la localisation des ARNm est connue, sa fonction nucléaire est encore inconnue. Nous avons montré que She2p contient une séquence de localisation nucléaire non classique qui est essentielle à son import nucléaire médié par l’importine α (Srp1p). L’exclusion de She2p du noyau par mutation de son NLS empêche la liaison de Loc1p et Puf6p sur l’ARNm ASH1, entrainant un défaut de localisation de l’ARNm et de la protéine. Pour étudier plus en détail l’assemblage de la machinerie de localisation des ARNm dans le noyau, nous avons utilisé des techniques d’immunoprécipitation de chromatine afin de suivre le recrutement des facteurs de localisation et des répresseurs traductionnels sur les ARNm naissants. Nous avons montré que She2p est recruté sur le gène ASH1 pendant sa transcription, via son interaction avec l’ARNm ASH1 naissant. Puf6p est également recruté sur ASH1, mais d’une manière dépendante de la présence de She2p. De façon intéressante, nous avons détecté une interaction entre She2p et la plus grande sous-unité de l’ARN polymérase II (Rpb1p). Cette interaction est détectée avec la forme active en élongation de l’ARN polymérase II. Nous avons également démontré que She2p interagit avec le complexe d’élongation de la transcription Spt4p/Spt5p. Une délétion de SPT4 ou une mutation dans SPT5 (Ts spt5) à température restrictive empêche l’interaction entre She2p et Rpb1p, et diminue le recrutement de She2p au gène ASH1, entrainant un défaut de localisation de l’ARNm et un défaut de localisation asymétrique de la protéine Ash1p. De manière globale, nos résultats montrent que les facteurs impliqués dans la localisation cytoplasmique des ARNm et dans leur contrôle traductionnel sont recrutés de façon co-transcriptionnelle sur les ARNm naissants via leur interaction avec la machinerie de transcription, suggèrant un rôle important de la machinerie transcriptionelle dans la localisation des ARNm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les protéines DOCK180 et ELMO coopèrent ensemble biochimiquement et génétiquement afin d’activer la GTPase Rac1 lors de plusieurs évènements biologiques. Toutefois, le rôle que jouent ces protéines dans la signalisation par Rac est encore mal compris. Nous émettons l’hypothèse que Dock180 agit comme activateur de Rac, alors que ELMO est requis pour l’intégration de la signalisation de Rac plutôt que son activation per se. Nous postulons que ELMO agit comme signal de localisation intracellulaire afin de restreindre de façon spatio-temporelle la signalisation de Rac en aval de Dock180, et/ou que ELMO agit comme protéine d’échafaudage entre Rac et ses effecteurs pour amplifier la migration cellulaire. Dans l’objectif nº 1, nous démontrons que le domaine PH atypique de ELMO1 est le site d’interaction principal entre cette protéine et DOCK180. De plus, nous démontrons que la liaison entre ELMO et DOCK180 n’est pas nécessaire pour l’activation de Rac, mais est plutôt essentielle pour faciliter la réorganisation du cytosquelette induite par l’activation de Rac en aval de Dock180. Ces résultats impliquent que ELMO pourrait jouer des rôles additionnels dans la signalisation par Rac. Dans l’objectif nº 2, nous avons découvert l’existence d’une homologie structurelle entre ELMO et un module d’autorégulation de la formine Dia1, et avons identifié trois nouveaux domaines dans la protéine ELMO : les domaines RBD, EID et EAD. De façon analogue à Dia1, nous avons découvert que ELMO à l’état basal est autoinhibé grâce à des intéractions intramoléculaires. Nous proposons que l’état d’activation des protéines ELMO est régulé de façon similaire aux formines de la famille Dia, c’est-à-dire grâce à des interactions avec d’autres protéines. Dans l’objectif nº 3, nous identifions un domaine RBD polyvalent chez ELMO. Ce domaine possède une double spécificité pour les GTPases de la famille Rho et Arf. Nous avons découvert que Arl4A agit comme signal de recrutement membranaire pour le module ELMO/DOCK180/Rac. Nos résultats nous permettent de supposer que d’autres GTPases pourraient être impliquées dans l’activation et la localisation de cette voie de signalisation. Nous concluons qu’à l’état basal, ELMO et DOCK180 forment un complexe dans lequel ELMO est dans sa conformation autoinhibée. Bien que le mécanisme d’activation de ELMO ne soit pas encore bien compris, nous avons découvert que, lorsqu’il y a stimulation cellulaire, certaines GTPases liées au GTP peuvent intéragir avec le domaine RBD de ELMO pour relâcher les contacts intramoléculaires et/ou localiser le complexe à la membrane. Ainsi, les GTPases peuvent servir d’ancrage au complexe ELMO/DOCK180 pour assurer une regulation spatiotemporelle adequate de l’activation et de la signalisation de Rac.