971 resultados para LiteSteel beams
Resumo:
A new technique capable of obtaining quantitative values of the rotation angle of the polarization vector by using holography is presented. This is a two-stage holographic process; during the recording stage a hologram of the object of interest is obtained. The reference beam is composed of two beams that form a small angle between them and keep their polarization states at right angles to each other. In the reconstruction stage of the hologram, two images from the hologram are obtained along two different angles. As a result of the interference between these two images, a set of parallel fringes is formed at the image plane. The fringe contrast on the reconstruction is related to the angle of the polarization vector of the light at each position on the image plane. Measurements of the rotation of the polarization angle of a fraction of a degree were obtained. The main application of this technique is in the study of transient phenomena, where single-shot measurements are the only means of obtaining reliable data.
Resumo:
In coordination with a Technical Advisory Committee (TAC) consisting of County Engineers and Iowa DOT representatives, the Iowa DOT has proposed to develop a set of standards for a single span prefabricated bridge system for use on the local road system. The purpose of the bridge system is to improve bridge construction, accelerate project delivery, improve worker safety, be cost effective, reduce impacts to the travelling public by reducing traffic disruptions and the duration of detours, and allow local forces to construct the bridges. HDR Inc. was selected by the Iowa DOT to perform the initial concept screening of the bridge system. This Final Report summarizes the initial conceptual effort to investigate potential systems, make recommendations for a preferred system and propose initial details to be tested in the laboratory in Phase 2 of the project. The prefabricated bridge components were to be based on the following preliminary criteria set forth by the TAC. The criteria were to be verified and/ or modified as part of the conceptual development. - 24’ and 30’ roadway widths - Skews of 0o, 15o, and 30o - Span lengths of 30’ – 70’ in 10’ increments using precast concrete beams - Voided box beams could be considered - Limit precast element weight to 45,000 pounds for movement and placement of beams - Beams could be joined transversely with threaded rods - Abutment concepts may included precast as well as an option for cast-in-place abutments with pile foundations In addition to the above criteria, there was an interest to use a single-width prefabricated bridge component to simplify fabrication as well as a desire to utilize non-prestressed concrete systems where possible to allow for precasting of the beam modules by local forces or local precast plants. The SL-1 modular steel bridge rail was identified for use with this single span prefabricated bridge system.
Resumo:
This report describes the measurement of dynamic (live load) deflections in a 240' x 30' three span continuous prestressed steel bridge, skewed 30 degrees. The design assumptions and prestressing procedure are described briefly, and the instrumentation and loading are discussed. The actual deflections are presented in tabular form, and the deflections due to the design live load are calculated. The maximum deflections are presented as a ratio of the span length, and the further use of prestressed steel beams is recommended.
Resumo:
In conventional construction practices, a longitudinal joint is sawed in a PCC (Portland Cement Concrete) pavement to control concrete shrinkage cracking between two lanes of traffic. Sawing a joint in hardened concrete is an expensive and time consuming operation. The longitudinal joint is not a working joint (in comparison to a transverse joint) as it is typically tied with a tie bar at 30 inch spacing. The open joint reservoir, left by the saw blade, typically is filled or sealed with a durable crack sealant to keep incompressibles and water from getting into the joint reservoir. An experimental joint forming knife has been developed. It is installed under the paving machine to form the longitudinal joint in the wet concrete as a part of the paving process. Through this research method, forming a very narrow longitudinal joint during the paving process, two conventional paving operations can be eliminated. Joint forming eliminates the need of the joint sawing operation in the hard concrete, and as the joint that is formed does not leave a wide-open reservoir, but only a hairline crack, it does not need the joint filling or sealing operation. Therefore, the two conventional longitudinal joint sawing and sealing operations are both being eliminated by this innovation. A laboratory scale prototype joint forming knife was built and tested, initially forming joints in small concrete beams. The results were positive so the method was proposed for field testing. Initial field tests were done in the construction season of 2001, limited to one paving contractor. A number of modifications were made to the knife throughout the field tests. About 3000 feet of longitudinal joint was formed in 2001. Additional testing was done in the 2002 construction season, working with the same contractor. About 150,000 feet of longitudinal joint was formed in 2002. Evaluations of the formed joints were done to determine longitudinal joint hairline crack development rate and appearance. Additional tests will be done in the next construction season to improve or perfect the longitudinal joint forming technique.
Resumo:
Portland cement concrete is an outstanding structural material but stresses and cracks often occur in large structures due to drying shrinkage. The objective of this research was to determine the change in length due to loss of moisture from placement through complete drying of portland cement concrete. The drying shrinkage was determined for four different combinations of Iowa DOT structural concrete mix proportions and materials. The two mix proportions used were an Iowa DOT D57 (bridge deck mix proportions) and a water reduced modified C4 mix. Three 4"x 4"x 18" beams were made for each mix. After moist curing for three days, all beams were maintained in laboratory dry air and the length and weight were measured at 73°F ± 3°F. The temperature was cycled on alternate days from 73°F to 90°F through four months. From four months through six months, the temperature was cycled one day at 73°F and six days at 130°F. It took approximately six months for the concrete to reach a dry condition with these temperatures. The total drying shrinkage for the four mixes varied from .0106 in. to .0133 in. with an average of .0120 in. The rate of shrinkage was approximately .014% shrinkage per 1% moisture loss for all four mixes. The rate and total shrinkage for all four mixes was very similar and did not seem to depend on the type of coarse aggregate or the use of a retarder.
Resumo:
The use of Railroad Flatcars (RRFCs) as the superstructure on low-volume county bridges has been investigated in a research project conducted by the Bridge Engineering Center at Iowa State University. These bridges enable county engineers to replace old, inadequate county bridge superstructures for less than half the cost and in a shorter construction time than required for a conventional bridge. To illustrate their constructability, adequacy, and economy, two RRFC demonstration bridges were designed, constructed, and tested: one in Buchanan County and the other in Winnebago County. The Buchanan County Bridge was constructed as a single span with 56-ft-long flatcars supported at their ends by new, concrete abutments. The use of concrete in the substructure allowed for an integral abutment at one end of the bridge with an expansion joint at the other end. Reinforced concrete beams (serving as longitudinal connections between the three adjacent flatcars) were installed to distribute live loads among the RRFCs. Guardrails and an asphalt milling driving surface completed the bridge. The Winnebago County Bridge was constructed using 89-ft-long flatcars. Preliminary calculations determined that they were not adequate to span 89 ft as a simple span. Therefore, the flatcars were supported by new, steel-capped piers and abutments at the RRFCs' bolsters and ends, resulting in a 66-ft main span and two 10-ft end spans. Due to the RRFC geometry, the longitudinal connections between adjacent RRFCs were inadequate to support significant loads; therefore, transverse, recycled timber planks were utilized to effectively distribute live loads to all three RRFCs. A gravel driving surface was placed on top of the timber planks, and a guardrail system was installed to complete the bridge. Bridge behavior predicted by grillage models for each bridge was validated by strain and deflection data from field tests; it was found that the engineered RRFC bridges have live load stresses significantly below the AASHTO Bridge Design Specification limits. To assist in future RRFC bridge projects, RRFC selection criteria were established for visual inspection and selection of structurally adequate RRFCs. In addition, design recommendations have been developed to simplify live load distribution calculations for the design of the bridges. Based on the results of this research, it has been determined that through proper RRFC selection, construction, and engineering, RRFC bridges are a viable, economic replacement system for low-volume road bridges.
Resumo:
Recent data compiled by the National Bridge Inventory revealed 29% of Iowa's approximate 24,600 bridges were either structurally deficient or functionally obsolete. This large number of deficient bridges and the high cost of needed repairs create unique problems for Iowa and many other states. The research objective of this project was to determine the load capacity of a particular type of deteriorating bridge – the precast concrete deck bridge – which is commonly found on Iowa's secondary roads. The number of these precast concrete structures requiring load postings and/or replacement can be significantly reduced if the deteriorated structures are found to have adequate load capacity or can be reliably evaluated. Approximately 600 precast concrete deck bridges (PCDBs) exist in Iowa. A typical PCDB span is 19 to 36 ft long and consists of eight to ten simply supported precast panels. Bolts and either a pipe shear key or a grouted shear key are used to join adjacent panels. The panels resemble a steel channel in cross-section; the web is orientated horizontally and forms the roadway deck and the legs act as shallow beams. The primary longitudinal reinforcing steel bundled in each of the legs frequently corrodes and causes longitudinal cracks in the concrete and spalling. The research team performed service load tests on four deteriorated PCDBs; two with shear keys in place and two without. Conventional strain gages were used to measure strains in both the steel and concrete, and transducers were used to measure vertical deflections. Based on the field results, it was determined that these bridges have sufficient lateral load distribution and adequate strength when shear keys are properly installed between adjacent panels. The measured lateral load distribution factors are larger than AASHTO values when shear keys were not installed. Since some of the reinforcement had hooks, deterioration of the reinforcement has a minimal affect on the service level performance of the bridges when there is minimal loss of cross-sectional area. Laboratory tests were performed on the PCDB panels obtained from three bridge replacement projects. Twelve deteriorated panels were loaded to failure in a four point bending arrangement. Although the panels had significant deflections prior to failure, the experimental capacity of eleven panels exceeded the theoretical capacity. Experimental capacity of the twelfth panel, an extremely distressed panel, was only slightly below the theoretical capacity. Service tests and an ultimate strength test were performed on a laboratory bridge model consisting of four joined panels to determine the effect of various shear connection configurations. These data were used to validate a PCDB finite element model that can provide more accurate live load distribution factors for use in rating calculations. Finally, a strengthening system was developed and tested for use in situations where one or more panels of an existing PCDB need strengthening.
Resumo:
The main objective of this study is to determine the effectiveness of the Electrochemical Chloride Extraction (ECE) technique on a bridge deck with very high concentrations of chloride. This ECE technique was used during the summer of 2003 to reverse the effects of corrosion, which had occurred in the reinforcing steel embedded in the pedestrian bridge deck over Highway 6, along Iowa Avenue, in Iowa City, Iowa, USA. First, the half cell potential was measured to determine the existing corrosion level in the field. The half-cell potential values were in the indecisive range of corrosion (between -200 mV and -350 mV). The ECE technique was then applied to remove the chloride from the bridge deck. The chloride content in the deck was significantly reduced from 25 lb/cy to 4.96 lb/cy in 8 weeks. Concrete cores obtained from the deck were measured for their compressive strengths and there was no reduction in strength due to the ECE technique. Laboratory tests were also performed to demonstrate the effectiveness of the ECE process. In order to simulate the corrosion in the bridge deck, two reinforced slabs and 12 reinforced beams were prepared. First, the half-cell potentials were measured from the test specimens and they all ranged below -200 mV. Upon introduction of 3% salt solution, the potential reached up to -500 mV. This potential was maintained while a salt solution was being added for six months. The ECE technique was then applied to the test specimens in order to remove the chloride from them. Half-cell potential was measured to determine if the ECE technique can effectively reduce the level of corrosion.
Resumo:
The ends of prestressed concrete beams under expansion joints are often exposed to moisture and chlorides. Left unprotected, the moisture and chlorides come in contact with the ends of the prestressing strands and/or the mild reinforcing, resulting in corrosion. Once deterioration begins, it progresses unless some process is employed to address it. Deterioration can lead to loss of bearing area and therefore a reduction in bridge capacity. Previous research has looked into the use of concrete coatings (silanes, epoxies, fiber-reinforced polymers, etc.) for protecting prestressed concrete beam ends but found that little to no laboratory research has been done related to the performance of these coatings in this specific type of application. The Iowa Department of Transportation (DOT) currently specifies coating the ends of exposed prestressed concrete beams with Sikagard 62 (a high-build, protective, solvent-free, epoxy coating) at the precast plant prior to installation on the bridge. However, no physical testing of Sikagard 62 in this application has been completed. In addition, the Iowa DOT continues to see deterioration in the prestressed concrete beam ends, even those treated with Sikagard 62. The goals of this project were to evaluate the performance of the Iowa DOT-specified beam-end coating as well as other concrete coating alternatives based on the American Association of State Highway and Transportation Officials (AASHTO) T259-80 chloride ion penetration test and to test their performance on in-service bridges throughout the duration of the project. In addition, alternative beam-end forming details were developed and evaluated for their potential to mitigate and/or eliminate the deterioration caused by corrosion of the prestressing strands on prestressed concrete beam ends used in bridges with expansion joints. The alternative beam-end details consisted of individual strand blockouts, an individual blockout for a cluster of strands, dual blockouts for two clusters of strands, and drilling out the strands after they are flush cut. The goal of all of the forming alternatives was to offset the ends of the prestressing strands from the end face of the beam and then cover them with a grout/concrete layer, thereby limiting or eliminating their exposure to moisture and chlorides.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Back-focal-plane interferometry is used to measure displacements of optically trapped samples with very high spatial and temporal resolution. However, the technique is closely related to a method that measures the rate of change in light momentum. It has long been known that displacements of the interference pattern at the back focal plane may be used to track the optical force directly, provided that a considerable fraction of the light is effectively monitored. Nonetheless, the practical application of this idea has been limited to counter-propagating, low-aperture beams where the accurate momentum measurements are possible. Here, we experimentally show that the connection can be extended to single-beam optical traps. In particular, we show that, in a gradient trap, the calibration product κ·β (where κ is the trap stiffness and 1/β is the position sensitivity) corresponds to the factor that converts detector signals into momentum changes; this factor is uniquely determined by three construction features of the detection instrument and does not depend, therefore, on the specific conditions of the experiment. Then, we find that force measurements obtained from back-focal-plane displacements are in practice not restricted to a linear relationship with position and hence they can be extended outside that regime. Finally, and more importantly, we show that these properties are still recognizable even when the system is not fully optimized for light collection. These results should enable a more general use of back-focal-plane interferometry whenever the ultimate goal is the measurement of the forces exerted by an optical trap.
Resumo:
Työn tarkoituksena on ollut tutkia paperin pinnan karakterisoinnin menetelmiä ja tehdä katsauspaperin painettavuuden ennustamisen tutkimuksiin. Kaikkien kehitettyjen menetelmien tarkoituksena on tavalla tai toisella mitata paperin visuaalista vaikutelmaa loppukäyttäjän kannalta sekä ennustaa paperin painettavuutta. Menetelmiä on kehitetty aina 1940-luvulta lähtien ja tekniikan kehittyessä markkinoille tulee uusia menetelmiä, jotka ovat nopeampia ja tarkempia kuin edeltäjänsä. Työssä tarkasteltavat menetelmät on jaoteltu mekaanisiin, optisiin ja elektronisäteilyn läpäisyyn perustuviin menetelmiin. Lopuksi on tarkasteltu tutkimuksia, joiden pääasiallinen tarkoitus on ollut kehittää mittalaitteita ennustamaan paperin painotulosta todellisissa painatusolosuhteissa. Laboratoriolaitteita ja on-line-mittareita ei ole jaoteltu erikseen, koska menetelmän perusteella on helppo havaita, voiko laite mitata jotakin paperin ominaisuutta jopa yli 40 metriä sekunnissa liikkuvalla paperirainalla.
Resumo:
Diplomityön aiheena oli selvittää onko Suomessa GSM-tukiasemissa käytössä vaiheohjattuja antenniryhmiäja olisiko tällaisten antennien käyttöön kiinnostusta tai mitään es-teitä. Lähtökohtana tälle työlle oli ajatus GSM-tukiasema-antennista, jota voitaisiin kääntää tarpeen mukaan haluttuun suuntaan. Vaiheohjatut antenniryhmät mahdollistavat juuri tällaisen antennin keilan kääntämisen ja muokkaamisen elektronisesti, ilman kuluvia osia. Keilan muitakin ominaisuuksia voidaan säätää, kuten muotoa ja keilojen määrää. Nämä ominaisuudet mahdollistaisivat esimerkiksi ruuhkaisilla alueilla keilojen lisäämisen, jolloin alueen puhelujen välityskapasiteetti kasvaisi.Tarvittaessa voitaisiin myös keilan muotoa muuttaa. Esimerkiksi hätätilanteessasaadaan haluttu keila suunnattua tarkasti tietylle alueelle tai toiselle tukiasemalle ja näin varmistettua kuuluvuus. Myös huoltotoimenpiteet joissakin tapauksissa helpottuisivat. Etenkin vaikeakulkuisissa paikoissa sijaitsevien tukiasemien ensiapu, esimerkiksi antennin fyysisesti kääntyessä, voitaisiin hoitaa etänä kääntämällä pelkkää keilaa ja tässä tapauksessa kääntää antenni tukiaseman normaalin huollon yhteydessä. Suurimpia ongelmakohtia kyseisen tekniikan käyttöönotossa on ollut hinta, mutta muun muassa uusien valmistustekniikoiden avulla vaiheohjattujen antenniryhmien hintoja ollaan saatu pudotettua.
Resumo:
Résumé : La radiothérapie par modulation d'intensité (IMRT) est une technique de traitement qui utilise des faisceaux dont la fluence de rayonnement est modulée. L'IMRT, largement utilisée dans les pays industrialisés, permet d'atteindre une meilleure homogénéité de la dose à l'intérieur du volume cible et de réduire la dose aux organes à risque. Une méthode usuelle pour réaliser pratiquement la modulation des faisceaux est de sommer de petits faisceaux (segments) qui ont la même incidence. Cette technique est appelée IMRT step-and-shoot. Dans le contexte clinique, il est nécessaire de vérifier les plans de traitement des patients avant la première irradiation. Cette question n'est toujours pas résolue de manière satisfaisante. En effet, un calcul indépendant des unités moniteur (représentatif de la pondération des chaque segment) ne peut pas être réalisé pour les traitements IMRT step-and-shoot, car les poids des segments ne sont pas connus à priori, mais calculés au moment de la planification inverse. Par ailleurs, la vérification des plans de traitement par comparaison avec des mesures prend du temps et ne restitue pas la géométrie exacte du traitement. Dans ce travail, une méthode indépendante de calcul des plans de traitement IMRT step-and-shoot est décrite. Cette méthode est basée sur le code Monte Carlo EGSnrc/BEAMnrc, dont la modélisation de la tête de l'accélérateur linéaire a été validée dans une large gamme de situations. Les segments d'un plan de traitement IMRT sont simulés individuellement dans la géométrie exacte du traitement. Ensuite, les distributions de dose sont converties en dose absorbée dans l'eau par unité moniteur. La dose totale du traitement dans chaque élément de volume du patient (voxel) peut être exprimée comme une équation matricielle linéaire des unités moniteur et de la dose par unité moniteur de chacun des faisceaux. La résolution de cette équation est effectuée par l'inversion d'une matrice à l'aide de l'algorithme dit Non-Negative Least Square fit (NNLS). L'ensemble des voxels contenus dans le volume patient ne pouvant être utilisés dans le calcul pour des raisons de limitations informatiques, plusieurs possibilités de sélection ont été testées. Le meilleur choix consiste à utiliser les voxels contenus dans le Volume Cible de Planification (PTV). La méthode proposée dans ce travail a été testée avec huit cas cliniques représentatifs des traitements habituels de radiothérapie. Les unités moniteur obtenues conduisent à des distributions de dose globale cliniquement équivalentes à celles issues du logiciel de planification des traitements. Ainsi, cette méthode indépendante de calcul des unités moniteur pour l'IMRT step-andshootest validée pour une utilisation clinique. Par analogie, il serait possible d'envisager d'appliquer une méthode similaire pour d'autres modalités de traitement comme par exemple la tomothérapie. Abstract : Intensity Modulated RadioTherapy (IMRT) is a treatment technique that uses modulated beam fluence. IMRT is now widespread in more advanced countries, due to its improvement of dose conformation around target volume, and its ability to lower doses to organs at risk in complex clinical cases. One way to carry out beam modulation is to sum smaller beams (beamlets) with the same incidence. This technique is called step-and-shoot IMRT. In a clinical context, it is necessary to verify treatment plans before the first irradiation. IMRT Plan verification is still an issue for this technique. Independent monitor unit calculation (representative of the weight of each beamlet) can indeed not be performed for IMRT step-and-shoot, because beamlet weights are not known a priori, but calculated by inverse planning. Besides, treatment plan verification by comparison with measured data is time consuming and performed in a simple geometry, usually in a cubic water phantom with all machine angles set to zero. In this work, an independent method for monitor unit calculation for step-and-shoot IMRT is described. This method is based on the Monte Carlo code EGSnrc/BEAMnrc. The Monte Carlo model of the head of the linear accelerator is validated by comparison of simulated and measured dose distributions in a large range of situations. The beamlets of an IMRT treatment plan are calculated individually by Monte Carlo, in the exact geometry of the treatment. Then, the dose distributions of the beamlets are converted in absorbed dose to water per monitor unit. The dose of the whole treatment in each volume element (voxel) can be expressed through a linear matrix equation of the monitor units and dose per monitor unit of every beamlets. This equation is solved by a Non-Negative Least Sqvare fif algorithm (NNLS). However, not every voxels inside the patient volume can be used in order to solve this equation, because of computer limitations. Several ways of voxel selection have been tested and the best choice consists in using voxels inside the Planning Target Volume (PTV). The method presented in this work was tested with eight clinical cases, which were representative of usual radiotherapy treatments. The monitor units obtained lead to clinically equivalent global dose distributions. Thus, this independent monitor unit calculation method for step-and-shoot IMRT is validated and can therefore be used in a clinical routine. It would be possible to consider applying a similar method for other treatment modalities, such as for instance tomotherapy or volumetric modulated arc therapy.
Resumo:
Focused ion beam milling is a processing technology which allows flexible direct writing of nanometer scale features efficiently substituting electron beam lithography. No mask need results in ability for patterns writing even on fragile micromechanical devices. In this work we studied the abilities of the tool for fabrication of diffraction grating couplers in silicon nitride waveguides. The gratings were fabricated on a chip with extra fragile cantilevers of sub micron thickness. Optical characterization of the couplers was done using excitation of the waveguides in visible range by focused Gaussian beams of different waist sizes. Influence of Ga+ implantation on the device performance was studied.