979 resultados para Lippmann-Schwinger equation
Resumo:
An empirical equation is proposed to accurately correlate isothermal data over a wide range of temperature With the equation ln k = A* + B*/T-lambda the retention times of different solutes tested on OV-101, SE-54 and PEG 20M capillary columns have been achieved even when lambda is assigned a constant value of 1.7 Comparison with ln k = A + B/T and in k = c + d/T+ h/T-2, shows that the proposed equation is of higher accuracy and is applicable to extrapolation calculation, especially from data at high temperature to those at low temperature. Parameters A* and B* as well as A and B are also discussed. The linear correlation of A* and B* is weaker than that of A and B.
Resumo:
How much information about the shape of an object can be inferred from its image? In particular, can the shape of an object be reconstructed by measuring the light it reflects from points on its surface? These questions were raised by Horn [HO70] who formulated a set of conditions such that the image formation can be described in terms of a first order partial differential equation, the image irradiance equation. In general, an image irradiance equation has infinitely many solutions. Thus constraints necessary to find a unique solution need to be identified. First we study the continuous image irradiance equation. It is demonstrated when and how the knowledge of the position of edges on a surface can be used to reconstruct the surface. Furthermore we show how much about the shape of a surface can be deduced from so called singular points. At these points the surface orientation is uniquely determined by the measured brightness. Then we investigate images in which certain types of silhouettes, which we call b-silhouettes, can be detected. In particular we answer the following question in the affirmative: Is there a set of constraints which assure that if an image irradiance equation has a solution, it is unique? To this end we postulate three constraints upon the image irradiance equation and prove that they are sufficient to uniquely reconstruct the surface from its image. Furthermore it is shown that any two of these constraints are insufficient to assure a unique solution to an image irradiance equation. Examples are given which illustrate the different issues. Finally, an overview of known numerical methods for computing solutions to an image irradiance equation are presented.
Resumo:
M. Hieber, I. Wood: Asymptotics of perturbations to the wave equation. In: Evolution Equations, Lecture Notes in Pure and Appl. Math., 234, Marcel Dekker, (2003), 243-252.
Resumo:
High-intensity focused ultrasound is a form of therapeutic ultrasound which uses high amplitude acoustic waves to heat and ablate tissue. HIFU employs acoustic amplitudes that are high enough that nonlinear propagation effects are important in the evolution of the sound field. A common model for HIFU beams is the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation which accounts for nonlinearity, diffraction, and absorption. The KZK equation models diffraction using the parabolic or paraxial approximation. Many HIFU sources have an aperture diameter similar to the focal length and the paraxial approximation may not be appropriate. Here, results obtained using the “Texas code,” a time-domain numerical solution to the KZK equation, were used to assess when the KZK equation can be employed. In a linear water case comparison with the O’Neil solution, the KZK equation accurately predicts the pressure field in the focal region. The KZK equation was also compared to simulations of the exact fluid dynamics equations (no paraxial approximation). The exact equations were solved using the Fourier-Continuation (FC) method to approximate derivatives in the equations. Results have been obtained for a focused HIFU source in tissue. For a low focusing gain transducer (focal length 50λ and radius 10λ), the KZK and FC models showed excellent agreement, however, as the source radius was increased to 30λ, discrepancies started to appear. Modeling was extended to the case of tissue with the appropriate power law using a relaxation model. The relaxation model resulted in a higher peak pressure and a shift in the location of the peak pressure, highlighting the importance of employing the correct attenuation model. Simulations from the code that were compared to experimental data in water showed good agreement through the focal plane.
Resumo:
The antibracket in the antifield-BRST formalism is known to define a map Hp × Hq → Hp + q + 1 associating with two equivalence classes of BRST invariant observables of respective ghost number p and q an equivalence class of BRST invariant observables of ghost number p + q + 1. It is shown that this map is trivial in the space of all functionals, i.e. that its image contains only the zeroth class. However, it is generically non-trivial in the space of local functionals. Implications of this result for the problem of consistent interactions among fields with a gauge freedom are then drawn. It is shown that the obstructions to constructing non-trivial such interactions lie precisely in the image of the antibracket map and are accordingly non-existent if one does not insist on locality. However consistent local interactions are severely constrained. The example of the Chern-Simons theory is considered. It is proved that the only consistent, local, Lorentz covariant interactions for the abelian models are exhausted by the non-abelian Chern-Simons extensions. © 1993.
Resumo:
A defect equation for the coupling of nonlinear subproblems defined in nonoverlapped subdomains arise in domain decomposition methods is presented. Numerical solutions of defect equations by means of quasi-Newton methods are considered.
Resumo:
A parallel time-domain algorithm is described for the time-dependent nonlinear Black-Scholes equation, which may be used to build financial analysis tools to help traders making rapid and systematic evaluation of buy/sell contracts. The algorithm is particularly suitable for problems that do not require fine details at each intermediate time step, and hence the method applies well for the present problem.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
The characterization of thermocouple sensors for temperature measurement in varying-flow environments is a challenging problem. Recently, the authors introduced novel difference-equation-based algorithms that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. In particular, a linear least squares (LS) lambda formulation of the characterization problem, which yields unbiased estimates when identified using generalized total LS, was introduced. These algorithms assume that time constants do not change during operation and are, therefore, appropriate for temperature measurement in homogenous constant-velocity liquid or gas flows. This paper develops an alternative ß-formulation of the characterization problem that has the major advantage of allowing exploitation of a priori knowledge of the ratio of the sensor time constants, thereby facilitating the implementation of computationally efficient algorithms that are less sensitive to measurement noise. A number of variants of the ß-formulation are developed, and appropriate unbiased estimators are identified. Monte Carlo simulation results are used to support the analysis.
Resumo:
A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.
Resumo:
The chaotic profile of dust grain dynamics associated with dust-acoustic oscillations in a dusty plasma is considered. The collective behaviour of the dust plasma component is described via a multi-fluid model, comprising Boltzmann distributed electrons and ions, as well as an equation of continuity possessing a source term for the dust grains, the dust momentum and Poisson's equations. A Van der Pol–Mathieu-type nonlinear ordinary differential equation for the dust grain density dynamics is derived. The dynamical system is cast into an autonomous form by employing an averaging method. Critical stability boundaries for a particular trivial solution of the governing equation with varying parameters are specified. The equation is analysed to determine the resonance region, and finally numerically solved by using a fourth-order Runge–Kutta method. The presence of chaotic limit cycles is pointed out.