940 resultados para Linear model
Resumo:
Transmission expansion planning (TEP) is a classic problem in electric power systems. In current optimization models used to approach the TEP problem, new transmission lines and two-winding transformers are commonly used as the only candidate solutions. However, in practice, planners have resorted to non-conventional solutions such as network reconfiguration and/or repowering of existing network assets (lines or transformers). These types of non-conventional solutions are currently not included in the classic mathematical models of the TEP problem. This paper presents the modeling of necessary equations, using linear expressions, in order to include non-conventional candidate solutions in the disjunctive linear model of the TEP problem. The resulting model is a mixed integer linear programming problem, which guarantees convergence to the optimal solution by means of available classical optimization tools. The proposed model is implemented in the AMPL modeling language and is solved using CPLEX optimizer. The Garver test system, IEEE 24-busbar system, and a Colombian system are used to demonstrate that the utilization of non-conventional candidate solutions can reduce investment costs of the TEP problem. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this study was to compare linear and nonlinear programming models for feed formulation, for maximum profit, considering the real variation in the prices of the corn, soybean meal and broilers during the period from January of 2008 to October of 2009, in the São Paulo State, Brazil. For the nonlinear formulation model, it was considered the following scenarios of prices: a) the minimum broiler price and the maximum prices of the corn and soybean meal during the period, b) the mean prices of the broiler, corn and soybean meal in the period and c) the maximum broiler price and the minimum prices of the corn and soybean meal, in the considered period; while for the linear formulation model, it was considered just the prices of the corn and the soybean. It was used the Practical Program for Feed Formulation 2.0 for the diets establishment. A total of 300 Cobb male chicks were randomly assigned to the 4 dietary treatments with 5 replicate pens of 15 chicks each. The birds were fed with a starter diet until 21 d and a grower diet from 22 to 42 d of age, and they had ad libitum access to feed and water, on floor with wood shavings as litter. The broilers were raised in an environmentally-controlled house. Body weight, body weight gain, feed intake, feed conversion ratio and profitability (related to the prices variation of the broilers and ingredients) were obtained at 42 d of age. It was found that the broilers fed with the diet formulated with the linear model presented the lowest feed intake and feed conversion ratio as compared with the broilers fed with diets from nonlinear formulation models. There were no significant differences in body weight and body weight gain among the treatments. Nevertheless, the profitabilities of the diets from the nonlinear model were significantly higher than that one from the linear formulation model, when the corn and soybean meal prices were near or below their average values for the studied period, for any broiler chicken price.
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Enfermagem (mestrado profissional) - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim To assess the distribution, group size, seasonal occurrence and annual trends of cetaceans. Location The study area included all major inland waters of Southeast Alaska. Methods Between 1991 and 2007, cetacean surveys were conducted by observers who kept a constant watch when the vessel was underway and recorded all cetaceans encountered. For each species, we examined distributional patterns, group size, seasonal occurrence and annual trends. Analysis of variance (anova F) was used to test for differences in group sizes between multiple means, and Student’s t-test was used to detect differences between pairwise means. Cetacean seasonal occurrence and annual trends were investigated using a generalized linear model framework. Results Humpback whales (Megaptera novaeangliae) were seen throughout the region, with numbers lowest in spring and highest in the fall. Fin whale (Balaenoptera physalus) and minke whale (Balaenoptera acutorostrata) distributions were more restricted than that reported for humpback whales, and the low number of sightings precluded evaluating seasonal trends. Three killer whale (Orcinus orca) eco-types were documented with distributions occurring throughout inland waters. Seasonal patterns were not detected or could not be evaluated for resident and offshore killer whales, respectively; however, the transient eco-type was more abundant in the summer. Dall’s porpoise (Phocoenoides dalli) were distributed throughout the region, with more sightings in spring and summer than in fall. Harbour porpoise (Phocoena phocoena) distribution was clumped, with concentrations occurring in the Icy Strait/Glacier Bay and Wrangell areas and with no evidence of seasonality. Pacific white-sided dolphins (Lagenorhynchus obliquidens) were observed only occasionally, with more sightings in the spring. For most species, group size varied on both an annual and seasonal basis. Main conclusions Seven cetacean species occupy the inland waters of Southeast Alaska, with distribution, group size, seasonal occurrence and annual trends varying by species. Future studies that compare spatial and temporal patterns with other features (e.g. oceanography, prey resources) may help in identifying the key factors that support the high density and biodiversity of cetaceans found in this region. An increased understanding of the region’s marine ecology is an essential step towards ensuring the long-term conservation of cetaceans in Southeast Alaska.