936 resultados para Limit cycles
Resumo:
Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.
Resumo:
Decapoda taken in Continuous Plankton Recorder (CPR) samples from the Pacific in 1997 and 2000-2003 have been identified and measured. Some previously un-described larval stages were referred to species and characteristics of these are described. Distributions and seasonal occurrence of decapod taxa in the samples are described and discussed with particular emphasis on the dendrobranchiate shrimp Sergestes similis and the brachyurans Cancer spp. And Chionoecetes spp. There is a prolonged larval season at low levels of abundance off the Californian coast but in the more northern waters there is a shorter productive period but numbers of larvae per sample are high, particularly in June. Larvae of Chionoecetes and other Oregoninae were found only from May to July.
Resumo:
The oceans play a key role in climate regulation especially in part buffering (neutralising) the effects of increasing levels of greenhouse gases in the atmosphere and rising global temperatures. This chapter examines how the regulatory processes performed by the oceans alter as a response to climate change and assesses the extent to which positive feedbacks from the ocean may exacerbate climate change. There is clear evidence for rapid change in the oceans. As the main heat store for the world there has been an accelerating change in sea temperatures over the last few decades, which has contributed to rising sea‐level. The oceans are also the main store of carbon dioxide (CO2), and are estimated to have taken up ∼40% of anthropogenic-sourced CO2 from the atmosphere since the beginning of the industrial revolution. A proportion of the carbon uptake is exported via the four ocean ‘carbon pumps’ (Solubility, Biological, Continental Shelf and Carbonate Counter) to the deep ocean reservoir. Increases in sea temperature and changing planktonic systems and ocean currents may lead to a reduction in the uptake of CO2 by the ocean; some evidence suggests a suppression of parts of the marine carbon sink is already underway. While the oceans have buffered climate change through the uptake of CO2 produced by fossil fuel burning this has already had an impact on ocean chemistry through ocean acidification and will continue to do so. Feedbacks to climate change from acidification may result from expected impacts on marine organisms (especially corals and calcareous plankton), ecosystems and biogeochemical cycles. The polar regions of the world are showing the most rapid responses to climate change. As a result of a strong ice–ocean influence, small changes in temperature, salinity and ice cover may trigger large and sudden changes in regional climate with potential downstream feedbacks to the climate of the rest of the world. A warming Arctic Ocean may lead to further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.
Resumo:
‘Wasp-waist’ systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.
Resumo:
Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.
Resumo:
An exploration and collection mission for wild Brassica oleracea populations was carried out in spring and summer of 2013. The aim of this collection was to expand the number of accessions of wild Brassica oleracea available for basic and applied research in plant breeding. In this paper we report a new accession of wild Brassica oleracea in an unexplored coastal area of Galicia, NW Iberian Peninsula. Details of population ecology and vegetation, soil, climate and geographic data were recorded for this population. The “Endangered” threat category for the region is proposed, and actions for in situ and ex situ conservation are proposed. Seeds will be added to the germplasm collections of University of Santiago de Compostela and Misión Biológica de Galicia (CSIC) for further research on diverse aspects of the dynamics and ecophysiology of the population along with characterization and evaluation of useful traits.
Cycles of Accumulation, Crisis, Materials and Space: Can Different Theories of Change be Reconciled?
Resumo:
The temporal and spatial extent of Holocene climate change is an area of considerable uncertainty, with solar forcing recently proposed to be the origin of cycles identified in the North Atlantic region. To address these issues we have developed an annually resolved record of changes in Irish bog tree populations over the last 7468 years which, together with radiocarbon-dated bog and lake-edge populations, extend the dataset back to 9000 yr ago. The Irish trees underpin the internationally accepted radiocarbon calibration curve, used to derive a proxy of solar activity, and allow us to test solar forcing of Holocene climate change. Tree populations and age structures provide unambiguous evidence of major shifts in Holocene surface moisture, with a dominant cyclicity of 800 yr, similar to marine cycles in the North Atlantic, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. The cycles, however, are not coherent with changes in solar activity (both being on the same absolute timescale), indicating that Holocene North Atlantic climate variability at the millennial and centennial scale is not driven by a linear response to changes in solar activity.
Resumo:
We describe a simple theoretical model to investigate the anomalous effects of opacity on spectral line ratios, as previously studied in elements such as Fe XV and Fe XVII. The model developed is general: it is not specific to a particular atomic system, thus giving applicability to a number of coronal and chromospheric plasmas; furthermore, it may be applied to a variety of astrophysically relevant geometries. The analysis is underpinned by geometrical arguments, and we outline a technique for it to be used as a tool for the explicit diagnosis of plasma geometry in distant astrophysical objects.