904 resultados para Learning algorithm
Resumo:
Recently Adams and Bischof (1994) proposed a novel region growing algorithm for segmenting intensity images. The inputs to the algorithm are the intensity image and a set of seeds - individual points or connected components - that identify the individual regions to be segmented. The algorithm grows these seed regions until all of the image pixels have been assimilated. Unfortunately the algorithm is inherently dependent on the order of pixel processing. This means, for example, that raster order processing and anti-raster order processing do not, in general, lead to the same tessellation. In this paper we propose an improved seeded region growing algorithm that retains the advantages of the Adams and Bischof algorithm fast execution, robust segmentation, and no tuning parameters - but is pixel order independent. (C) 1997 Elsevier Science B.V.
Resumo:
Motivation: Prediction methods for identifying binding peptides could minimize the number of peptides required to be synthesized and assayed, and thereby facilitate the identification of potential T-cell epitopes. We developed a bioinformatic method for the prediction of peptide binding to MHC class II molecules. Results: Experimental binding data and expert knowledge of anchor positions and binding motifs were combined with an evolutionary algorithm (EA) and an artificial neural network (ANN): binding data extraction --> peptide alignment --> ANN training and classification. This method, termed PERUN, was implemented for the prediction of peptides that bind to HLA-DR4(B1*0401). The respective positive predictive values of PERUN predictions of high-, moderate-, low- and zero-affinity binder-a were assessed as 0.8, 0.7, 0.5 and 0.8 by cross-validation, and 1.0, 0.8, 0.3 and 0.7 by experimental binding. This illustrates the synergy between experimentation and computer modeling, and its application to the identification of potential immunotheraaeutic peptides.
Resumo:
Despite the fairly wide reporting in the literature of the ma ny roles of clinical supervision by the nursing teacher, little attention has been given to conceptualizing the relative priorities these roles take during the process of supervising nursing students in clinical practice. The purpose of this paper is to consider the manifestations and implications of conflicting roles when nurse lecturers undertake clinical supervision. Previously published research will provide working examples of issues in a conceptual framework for clinical teaching.
Resumo:
To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point-searching algorithm for solution interpolation in unstructured meshes consisting of 4-node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point-searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 td mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co ordinates of any point in a four-node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point-searching algorithm. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Objective. The purpose of this study was to determine whether the Hopkins Verbal Learning Test (HVLT) could be used as a valid and reliable screening test for mild dementia in older people, and to compare its performance to that of the Mini-Mental State Examination (MMSE). Method. Using a cross-sectional design, we studied three groups of older subjects recruited from a district geriatric psychiatry service: (1) 26 patients with DSM-IV dementia and MMSE scores of 18 or better; (2) 15 patients with psychiatric diagnoses other than dementia; and (3) 15 normal controls. The relationship of each potential cutting point on the HVLT and the MMSE was examined against the independently ascertained DSM-IV diagnoses of dementia using a Receiver Operating Characteristic (ROC) analysis. Results. The subjects consisted of 21 (37.5%) males and 35 (62.5%) females with a mean age of 74.7 (SD 6.1) years and a mean of 8.5 (SD 1.8) years of formal education. ROC analysis indicated that the optimal cutting point for detecting mild dementia in this group of subjects using the HVLT was 18/19 (sensitivity = 0.96, specificity = 0.80) and using the MMSE was 25/26 (sensitivity = 0.88, specificity = 0.93). Conclusions. The HVLT can be recommended as a valid and reliable screening test for mild dementia and as an adjunct in the clinical assessment of older people. The HVLT had better sensitivity than the MMSE in detecting patients with mild dementia, whereas the MMSE had better specificity. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
OBJECTIVE: To evaluate a diagnostic algorithm for pulmonary tuberculosis based on smear microscopy and objective response to trial of antibiotics. SETTING: Adult medical wards, Hlabisa Hospital, South Africa, 1996-1997. METHODS: Adults with chronic chest symptoms and abnormal chest X-ray had sputum examined for Ziehl-Neelsen stained acid-fast bacilli by light microscopy. Those with negative smears were treated with amoxycillin for 5 days and assessed. Those who had not improved were treated with erythromycin for 5 days and reassessed. Response was compared with mycobacterial culture. RESULTS: Of 280 suspects who completed the diagnostic pathway, 160 (57%) had a positive smear, 46 (17%) responded to amoxycillin, 34 (12%) responded to erythromycin and 40 (14%) were treated as smear-negative tuberculosis. The sensitivity (89%) and specificity (84%) of the full algorithm for culture-positive tuberculosis were high. However, 11 patients (positive predictive value [PPV] 95%) were incorrectly diagnosed with tuberculosis, and 24 cases of tuberculosis (negative predictive value [NPV] 70%) were not identified. NPV improved to 75% when anaemia was included as a predictor. Algorithm performance was independent of human immunodeficiency virus status. CONCLUSION: Sputum smear microscopy plus trial of antibiotic algorithm among a selected group of tuberculosis suspects may increase diagnostic accuracy in district hospitals in developing countries.
Resumo:
In this paper, the minimum-order stable recursive filter design problem is proposed and investigated. This problem is playing an important role in pipeline implementation sin signal processing. Here, the existence of a high-order stable recursive filter is proved theoretically, in which the upper bound for the highest order of stable filters is given. Then the minimum-order stable linear predictor is obtained via solving an optimization problem. In this paper, the popular genetic algorithm approach is adopted since it is a heuristic probabilistic optimization technique and has been widely used in engineering designs. Finally, an illustrative example is sued to show the effectiveness of the proposed algorithm.
Resumo:
Purpose. To conduct a controlled trial of traditional and problem-based learning (PBL) methods of teaching epidemiology. Method. All second-year medical students (n = 136) at The University of Western Australia Medical School were offered the chance to participate in a randomized controlled trial of teaching methods fur an epidemiology course. Students who consented to participate (n = 80) were randomly assigned to either a PBL or a traditional course. Students who did not consent or did not return the consent form (n = 56) were assigned to the traditional course, Students in both streams took identical quizzes and exams. These scores, a collection of semi-quantitative feedback from all students, and a qualitative analysis of interviews with a convenience sample of six students from each stream were compared. Results. There was no significant difference in performances on quizzes or exams between PBL and traditional students. Students using PBL reported a stronger grasp of epidemiologic principles, enjoyed working with a group, and, at the end of the course, were more enthusiastic about epidemiology and its professional relevance to them than were students in the traditional course. PBL students worked more steadily during the semester but spent only marginally more time on the epidemiology course overall. Interviews corroborated these findings. Non-consenting students were older (p < 0.02) and more likely to come from non-English-speaking backgrounds (p < 0.005). Conclusions. PBL provides an academically equivalent but personally far richer learning experience. The adoption of PBL approaches to medical education makes it important to study whether PBL presents particular challenges for students whose first language is not the language of instruction.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Affective learning, the learning of likes and dislikes, is proposed to differ from signal learning, the learning of relationships between events. However, affective learning research varies in the methodology used, and in addition, researchers concerned primarily with affective learning tend to use different paradigms from those concerned with signal learning. The current research used an affective priming task in addition to verbal ratings to assess changes in the valence of neutral geometric shapes in an aversive differential conditioning procedure. After acquisition, affective learning was present as indexed by ratings and affective priming, whereas after extinction, affective learning remained significant only in the ratings. This study suggests that different measures of affective learning may be differentially sensitive to valence, which has implications for studies that employ verbal ratings as the sole measure of affective learning. Moreover, there is no evidence from the current study that affective learning differs from signal learning.