971 resultados para Laser Doppler vibration
Resumo:
For the prediction of response of footings subjected to horizontal vibration, different types of contact shear distributions and displacement conditions are to be considered. Solutions using elastic half-space theory are not available for all the cases of shear distribution and displacement conditions. In this paper, solutions are obtained for the cases in which solutions are not available and the relevant coefficients are presented in tables which could be used in the appropriate equations for the prediction of dynamic response. Spring constants are evaluated and tabulated for different displacement and shear distribution conditions.
Resumo:
A simple technique for determining the energy sensitivities for the thermographic recording of laser beams is described. The principle behind this technique is that, if a laser beam with a known spatial distribution such as a Gaussian profile is used for imaging, the radius of the thermal image formed depends uniquely on the intensity of the impinging beam. Thus by measuring the radii of the images produced for different incident beam intensities the minimum intensity necessary (that is, the threshold) for thermographic imaging is found. The diameter of the laser beam can also be found from this measurement. A simple analysis based on the temperature distribution in the laser heated material shows that there is an inverse square root dependence on pulse duration or period of exposure for the energy fluence of the laser beam required, both for the threshold and the subsequent increase in the size of the recording. It has also been shown that except for low intensity, long duration exposure on very low conductivity materials, heat losses are not very significant.
Resumo:
Vibration problem of generally orthotropic plates with particular attention to plates of skew geometry is studied. The formulation is based on orthotropic plate theory with arbitrary orientation of the principal axes of orthotropy. The boundary conditions considered are combinations of simply supported, clamped, and free-edge conditions. Approximate solution for frequencies and modes is obtained by the Ritz method using products of appropriate beam characteristic functions as admissible functions. The variation of frequencies and modes with orientation of the axes of orthotropy is examined for different skew angles and boundary conditions. Features such as "crossings" and "quasi-degeneracies" of the frequency curves are found to occur with variation of the orientation of the axes of orthotropy for a given geometry of the skew plate. It is also found that for each combination of skew angle and side ratio, a particular orientation of the axes gives the highest value for the fundamental frequency of the plate.
Resumo:
The vibration problems of skew plates with different edge conditions involving simple support and clamping have been considered by using the variational method of Ritz, a double series of beam characteristic functions being employed appropriate to the combination of the edge conditions. Natural frequencies and modes of vibration have been obtained for different combinations of side ratio and skew angle. These detailed studies reveal several interesting features concerning the frequency curves and nodal patterns. The results presented should, in addition, be of considerable value and practical significance in design applications.
Resumo:
A method is presented for obtaining, approximately, the response covariance and probability distribution of a non-linear oscillator under a Gaussian excitation. The method has similarities with the hierarchy closure and the equivalent linearization approaches, but is different. A Gaussianization technique is used to arrive at the output autocorrelation and the input-output cross-correlation. This along with an energy equivalence criterion is used to estimate the response distribution function. The method is applicable in both the transient and steady state response analysis under either stationary or non-stationary excitations. Good comparison has been observed between the predicted and the exact steady state probability distribution of a Duffing oscillator under a white noise input.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
The paper deals with a rational approach to the development of general design criteria for non-dissipative vibration isolation systems. The study covers straight-through springmass systems as well as branched ones with dynamic absorbers. Various design options, such as the addition of another spring-mass pair, replacement of an existing system by one with more spring-mass pairs for the same space and material requirements, provision of one or more dynamic absorbers for the desired frequency range, etc., are investigated quantitatively by means of an algebraic algorithm which enables one to write down straightaway the velocity ratio and hence transmissibility of a linear dynamical system in terms of the constituent parameters.
Resumo:
Estimates of flexural frequencies of clamped square plates are initially obtained by the modified Bolotin's method. The mode shapes in “each direction” are then determined and the product functions of these mode shapes are used as admissible functions in the Rayleigh-Ritz method. The data for the first twenty eigenvalues in each of the three (four) symmetric groups obtained by the (i) Bolotin, (ii) Rayleigh and (iii) Rayleigh-Ritz methods are reported here. The Rayleigh estimates are found to be much closer to the true eigenvalues than the Bolotin estimates. The present product functions are found to be much superior to the conventional beam eigenmodes as admissible functions in the Rayleigh-Ritz method of analysis.
Resumo:
A theory for the emission of X-rays from a high density gaseous plasma interacting with CO2 laser is given. It predicts a sharp increase in the X-ray intensity for densities close to the critical.
Resumo:
Free vibration of thick rectangular plates is investigated by using the “method of initial functions” proposed by Vlasov. The governing equations are derived from the three-dimensional elastodynamic equations. They are obtained in the form of series and theories of any desired order can be constructed by deleting higher terms in the infinite order differential equations. The numerical results are compared with those of classical, Mindlin, and Lee and Reismann solutions.
Resumo:
Abstract is not available.
Resumo:
Heating of laser produced plasmas by an instability is investigated. For intense laser beams anomalous absorption is found. A comparison is made with the experiment.
Resumo:
Frequencies of free vibration of rectangular plates of arbitrary thickness, with different support conditions, are calculated by using the Method of Initial Functions (MIF), proposed by Vlasov. Sixth and fourth order MIF theories are used for the solution. Numerical results are presented for three square plates for three thickness ratios. The support conditions considered are (i) three sides simply supported and one side clamped, (ii) two opposite sides simply supported and the other two sides clamped and (iii) all sides clamped. It is found that the results produced by the MIF method are in fair agreement with those obtained by using other methods. The classical theory gives overestimates of the frequencies and the departures from the MIF results increase for higher modes and larger thickness ratios.
Resumo:
In this paper, non-linear programming techniques are applied to the problem of controlling the vibration pattern of a stretched string. First, the problem of finding the magnitudes of two control forces applied at two points l1 and l2 on the string to reduce the energy of vibration over the interval (l1, l2) relative to the energy outside the interval (l1, l2) is considered. For this problem the relative merits of various methods of non-linear programming are compared. The more complicated problem of finding the positions and magnitudes of two control forces to obtain the desired energy pattern is then solved by using the slack unconstrained minimization technique with the Fletcher-Powell search. In the discussion of the results it is shown that the position of the control force is very important in controlling the energy pattern of the string.