955 resultados para Lake poets.
Resumo:
It is both my honor and privilege to be here today to present the James A. Lake Academic Freedom Award. I thank you for this opportunity.
Resumo:
Abstract Water temperature and dissolved oxygen (DO) profiles were measured once every month from mid July to mid February in a relatively deep sand-pit lake in southeast Nebraska. These profiles showed depleted DO concentrations below the thermocline during summer stratification indicating areas fish will likely avoid in summer months. Colder temperatures in fall caused complete mixing of the water column allowing fish to inhabit all depths of the lake. An inverse temperature stratification occurred directly below the ice during winter months as ice cover cooled the surface water to below 4 degrees Celsius. Ice cover also blocked air – water oxygen transfer and reduced light for photosynthesizing algae. Associated with winter ice cover, DO concentrations in the hypolimnion decreased significantly, once again reducing available fish habitat. It is likely anglers will have a higher success rate catching fishing in water above 6 meters (m) (~20 feet) in a eutrophic sandpit lake during hot summer months and below ice cover in winter. Fish can utilize all depths of the lake during fall turnover and could theoretically be caught by anglers anywhere in the lake.
Resumo:
The availability of water shapes life in the western United States, and much of the water in the region originates in the Rocky Mountains. Few studies, however, have explicitly examined the history of water levels in the Rocky Mountains during the Holocene. Here, we examine the past levels of three lakes near the Continental Divide in Montana and Colorado to reconstruct Holocene moisture trends. Using transects of sediment cores and sub-surface geophysical profiles from each lake, we find that mid-Holocene shorelines in the small lakes (4–110 ha) were as much as ~10 m below the modern lake surfaces. Our results are consistent with existing evidence from other lakes and show that a wide range of settings in the region were much drier than today before 3000–2000 years ago. We also discuss evidence for millennial-scale moisture variation, including an abruptly-initiated and -terminated wet period in Colorado from 4400 to 3700 cal yr BP, and find only limited evidence for low-lake stands during the past millennium. The extent of low-water levels during the mid-Holocene, which were most severe and widespread ca. 7000–4500 cal yr BP, is consistent with the extent of insolation-induced aridity in previously published regional climate model simulations. Like the simulations, the lake data provide no evidence for enhanced zonal flow during the mid-Holocene, which has been invoked to explain enhanced mid-continent aridity at the time. The data, including widespread evidence for large changes on orbital time scales and for more limited changes during the last millennium, confirm the ability of large boundary-condition changes to push western water supplies beyond the range of recent natural variability.
Resumo:
Pollen and geochemical data from Little Lake, western Oregon, suggest several patterns of millennial-scale environmental change during marine isotope stage (MIS) 2 (14,100–27,600 cal yr B.P.) and the latter part of MIS 3 (27,600–42,500 cal yr B.P.). During MIS 3, a series of transitions between warm- and cold-adapted taxa indicate that temperatures oscillated by ca. 2±–4±C every 1000–3000 yr. Highs and lows in summer insolation during MIS 3 are generally associated with the warmest and coldest intervals. Warm periods at Little Lake correlate with warm sea-surface temperatures in the Santa Barbara Basin. Changes in the strength of the subtropical high and the jet stream may account for synchronous changes at the two sites. During MIS 2, shifts between mesic and xeric subalpine forests suggest changes in precipitation every 1000–3000 yr. Increases in Tsuga heterophylla pollen at 25,000 and 22,000 cal yr B.P. imply brief warmings. Minimum summer insolation and maximum global ice-volumes during MIS 2 correspond to cold and dry conditions. Fluctuations in precipitation at Little Lake do not correlate with changes in the Santa Barbara Basin and may be explained by variations in the strength of the glacial anticyclone and the position of the jet stream.
Resumo:
White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.
Resumo:
Four sediment cores were sampled from Lake Arari, located on Marajo Island at the mouth of the Amazon River. The island's vegetation cover is composed mainly of Amazon coastal forest, herbaceous and varzea vegetation. The integration of data on sedimentary structures, pollen, carbon and nitrogen isotope records, C/N ratios and radiocarbon ages allowed the identification of changes in vegetation and the sources of organic matter accumulated in the lake during the Holocene. The data indicate a relatively high flow energy, marine water influence and the presence of mangroves during the lagoon phase between 8990 and 8690 cal yr B.P. and 2310-2230 cal yr B.P. Between 2310 and 2230 cal yr B.P. and similar to 1000 cal yr B.P., the flow energy decreased and the mangroves were replaced by herbaceous vegetation following the decline in marine influence, likely due to the increase in freshwater river discharge. During the last 1000 years, Lake Arari was established in association with the expansion of herbaceous vegetation and the dominance of freshwater algae. (C) 2011 Elsevier BM. All rights reserved.
Resumo:
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e. g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Resumo:
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the "natural background level"). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of Pb-206/Pb-207 ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the Pb-206/Pb-207 ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (Pb-206/Pb-207 between 1.04 and 1.10), emitted during the last 50 years. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Histological and ultrastructural analyses of gills were observed in Nile tilapia collected from three different waterbodies in southeast Brazil: an urban lake in a park in the city of São Paulo, a reservoir in a rural city, and a commercial aquaculture facility. These aterbodies were analyzed and classified as hypereutrophic, eutrophic, and supereutrophic, respectively, with 310.00, 94.00, 28.00 of phosphate (PO2_ 4 lg L _1) and 65.49, 24.95, 12.83 of chlorophyll (lg L _1). A significant difference in the histological alterations index (HAI) was observed only in fish from the urban lake, with the presence of cell hypertrophy, hyperplasia, aneurism, and other alterations. When compared to the other groups, a large quantity of rodlet cells was also observed in the urban group. These results demonstrate the correlation of eutrophic states of water with gill morphology. Also discussed is the premise that large amounts of organic material dissolved in water can alter the morphology of the fish gills
Resumo:
ABSTRACT One of the major ecological challenges on Lake Victoria resources is the existence of “hot spots”, caused by human waste, urban runoff, and industrial effluents. The lake is tending towards eutrophication which is attributed to the increasing human population in its watershed. A report of the levels of perfluorooctane sulfonate and perfluorooctanoic acid in environmental matrices of Lake Victoria is presented, and the management implication of perfluorinated compounds and similar potential organic pollutants examined. Two widely consumed and economically important fish species namely Lates niloticus (Nile perch) and Oreochromis niloticus (Nile tilapia) were obtained from Winam gulf of Lake Victoria, Kenya, and analysed for perfluorooctane sulfonate and perfluorooctanoic acid in muscles and liver using liquid chromatography coupled with mass spectroscopy. Variability in the concentrations of perfluorooctanoic acid or perfluorooctane sulfonate in river waters (range perfluorooctanoic acid 0.4 – 96.4 ng/L and perfluorooctane sulfonate < 0.4 – 13.2 ng/L) was higher than for Lake waters (range perfluorooctanoic acid 0.4 – 11.7 ng/L and perfluorooctane sulfonate < 0.4 – 2.5 ng/L respectively). Significant correlations were tested between perfluorinated compounds levels in sediments, fish and water. Wastewater treatment plants and other anthropogenic sources have been identified as significant sources or pathways for the introduction of perfluoroalkyl compounds into Lake Victoria ecosystem. In this study, elevated concentrations of perfluorooctanoic acid and perfluorooctane sulfonate was found in two wastewater treatment plants (WWTPs) in Kisumu, City of Kenya. An alternative analytical method to liquid chromatography/ mass spectroscopy for analysis of perfluorocarboxylic acids in abiotic and biotic matrices where high concentrations are expected is also presented. Derivatisation of the acid group to form a suitable alkyl ester provided a suitable compound for mass spectroscopy detection coupled to gas chromatography instrumental analysis. The acid is esterified by an alkyl halide i.e benzyl bromide as the alkylating agent for Perfluorocarboxylic acids quantification. The study also involved degradability measurements of emerging perfluorinated surfactants substitutes. The stability of the substitutes of perfluorinated surfactants was tested by employing advanced oxidation processes, followed by conventional tests, among them an automated method based on the manometric respirometry test and standardized fix bed bioreactor [FBBR] on perfluorobutane sulfonate (PFBS), a fluoroethylene polymer, fluorosurfactant (Zonyl), two fluoraliphaticesters (NOVEC ™ FC4430 and NOVEC ™ FC4432) and 10-(trifluoromethoxy) decane-sulfonate. Most of these emmerging surfactants are well-established in the market and have been used in several applications as alternatives to PFOS and PFOA based surfactants. The results of this study can be used as pioneer information for further studies on the sources, behaviour and fate of PFOA and PFOS and other related compounds in both abiotic and biota compartments of Lake Victoria and other lakes. Further an overview in degradation of emerging perfluorinated compounds substitutes is presented. Contribution in method development especially for acid group based fluorosurfactants is presented. The data obtained in this study can particularly be considered when formulating policies and management measures for preservation and sustainability of Lake Victoria resources.
Resumo:
Proxy data are essential for the investigation of climate variability on time scales larger than the historical meteorological observation period. The potential value of a proxy depends on our ability to understand and quantify the physical processes that relate the corresponding climate parameter and the signal in the proxy archive. These processes can be explored under present-day conditions. In this thesis, both statistical and physical models are applied for their analysis, focusing on two specific types of proxies, lake sediment data and stable water isotopes.rnIn the first part of this work, the basis is established for statistically calibrating new proxies from lake sediments in western Germany. A comprehensive meteorological and hydrological data set is compiled and statistically analyzed. In this way, meteorological times series are identified that can be applied for the calibration of various climate proxies. A particular focus is laid on the investigation of extreme weather events, which have rarely been the objective of paleoclimate reconstructions so far. Subsequently, a concrete example of a proxy calibration is presented. Maxima in the quartz grain concentration from a lake sediment core are compared to recent windstorms. The latter are identified from the meteorological data with the help of a newly developed windstorm index, combining local measurements and reanalysis data. The statistical significance of the correlation between extreme windstorms and signals in the sediment is verified with the help of a Monte Carlo method. This correlation is fundamental for employing lake sediment data as a new proxy to reconstruct windstorm records of the geological past.rnThe second part of this thesis deals with the analysis and simulation of stable water isotopes in atmospheric vapor on daily time scales. In this way, a better understanding of the physical processes determining these isotope ratios can be obtained, which is an important prerequisite for the interpretation of isotope data from ice cores and the reconstruction of past temperature. In particular, the focus here is on the deuterium excess and its relation to the environmental conditions during evaporation of water from the ocean. As a basis for the diagnostic analysis and for evaluating the simulations, isotope measurements from Rehovot (Israel) are used, provided by the Weizmann Institute of Science. First, a Lagrangian moisture source diagnostic is employed in order to establish quantitative linkages between the measurements and the evaporation conditions of the vapor (and thus to calibrate the isotope signal). A strong negative correlation between relative humidity in the source regions and measured deuterium excess is found. On the contrary, sea surface temperature in the evaporation regions does not correlate well with deuterium excess. Although requiring confirmation by isotope data from different regions and longer time scales, this weak correlation might be of major importance for the reconstruction of moisture source temperatures from ice core data. Second, the Lagrangian source diagnostic is combined with a Craig-Gordon fractionation parameterization for the identified evaporation events in order to simulate the isotope ratios at Rehovot. In this way, the Craig-Gordon model can be directly evaluated with atmospheric isotope data, and better constraints for uncertain model parameters can be obtained. A comparison of the simulated deuterium excess with the measurements reveals that a much better agreement can be achieved using a wind speed independent formulation of the non-equilibrium fractionation factor instead of the classical parameterization introduced by Merlivat and Jouzel, which is widely applied in isotope GCMs. Finally, the first steps of the implementation of water isotope physics in the limited-area COSMO model are described, and an approach is outlined that allows to compare simulated isotope ratios to measurements in an event-based manner by using a water tagging technique. The good agreement between model results from several case studies and measurements at Rehovot demonstrates the applicability of the approach. Because the model can be run with high, potentially cloud-resolving spatial resolution, and because it contains sophisticated parameterizations of many atmospheric processes, a complete implementation of isotope physics will allow detailed, process-oriented studies of the complex variability of stable isotopes in atmospheric waters in future research.rn
Resumo:
http://www.sciencedirect.com/science/article/pii/S0045653510008891
Resumo:
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human-induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer-spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948-2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.