971 resultados para Lagrangian submanifold
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
The impact of selected observing systems on forecast skill is explored using the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis (ERA-40) system. Analyses have been produced for a surface-based observing system typical of the period prior to 1945/1950, a terrestrial-based observing system typical of the period 1950-1979 and a satellite-based observing system consisting of surface pressure and satellite observations. Global prediction experiments have been undertaken using these analyses as initial states, and which are available every 6 h, for the boreal winters of 1990/1991 and 2000/2001 and the summer of 2000, using a more recent version of the ECMWF model. The results show that for 500-hPa geopotential height, as a representative field, the terrestrial system in the Northern Hemisphere extratropics is only slightly inferior to the control system, which makes use of all observations for the analysis, and is also more accurate than the satellite system. There are indications that the skill of the terrestrial system worsens slightly and the satellite system improves somewhat between 1990/1991 and 2000/2001. The forecast skill in the Southern Hemisphere is dominated by the satellite information and this dominance is larger in the latter period. The overall skill is only slightly worse than that of the Northern Hemisphere. In the tropics (20 degrees S-20 degrees N), using the wind at 850 and 250 hPa as representative fields, the information content in the terrestrial and satellite systems is almost equal and complementary. The surface-based system has very limited skill restricted to the lower troposphere of the Northern Hemisphere. Predictability calculations show a potential for a further increase in predictive skill of 1-2 d in the extratropics of both hemispheres, but a potential for a major improvement of many days in the tropics. As well as the Eulerian perspective of predictability, the storm tracks have been calculated from all experiments and validated for the extratropics to provide a Lagrangian perspective.
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Resumo:
Flight at high altitude is part of a migration strategy that maximises insect population displacement. This thesis represents the first substantial analysis of insect migration and layering in Europe. Vertical-looking entomological radar has revealed specific characteristics of high-altitude flight: in particular layering (where a large proportion of the migrating insects are concentrated in a narrow altitude band). The meteorological mechanisms underpinning the formation of these layers are the focus of this thesis. Aerial netting samples and radar data revealed four distinct periods of high-altitude insect migration: dawn, daytime, dusk, and night-time. The most frequently observed nocturnal profiles during the summertime were layers. It is hypothesised that nocturnal layers initiate at a critical altitude (200–500 m above ground level) and time (20:00–22:00 hours UTC). Case study analysis, statistical analysis, and a Lagrangian trajectory model showed that nocturnal insect layers probably result from the insects’ response to meteorological conditions. Temperature was the variable most correlated with nocturnal insect layer presence and intensity because insects are poikilothermic, and temperatures experienced during high-altitude migration in temperate climates are expected to be marginal for many insects’ flight. Hierarchical effects were detected such that other variables—specifically wind speed—were only correlated with insect layer presence and intensity once temperatures were warm. The trajectory model developed comprised: (i) insect flight characteristics; (ii) turbulent winds (which cause vertical spread of the layer); and (iii) mean wind speed, which normally leads to horizontal displacements of hundreds of kilometres in a single migratory flight. This thesis has revealed that there is considerable migratory activity over the UK in the summer months, and a range of fascinating phenomena can be observed (including layers). The UK has moved from one of the least studied to perhaps the best studied environments of aerial insect migration and layering in the world.
Resumo:
Bayesian inference has been used to determine rigorous estimates of hydroxyl radical concentrations () and air mass dilution rates (K) averaged following air masses between linked observations of nonmethane hydrocarbons (NMHCs) spanning the North Atlantic during the Intercontinental Transport and Chemical Transformation (ITCT)-Lagrangian-2K4 experiment. The Bayesian technique obtains a refined (posterior) distribution of a parameter given data related to the parameter through a model and prior beliefs about the parameter distribution. Here, the model describes hydrocarbon loss through OH reaction and mixing with a background concentration at rate K. The Lagrangian experiment provides direct observations of hydrocarbons at two time points, removing assumptions regarding composition or sources upstream of a single observation. The estimates are sharpened by using many hydrocarbons with different reactivities and accounting for their variability and measurement uncertainty. A novel technique is used to construct prior background distributions of many species, described by variation of a single parameter . This exploits the high correlation of species, related by the first principal component of many NMHC samples. The Bayesian method obtains posterior estimates of , K and following each air mass. Median values are typically between 0.5 and 2.0 × 106 molecules cm−3, but are elevated to between 2.5 and 3.5 × 106 molecules cm−3, in low-level pollution. A comparison of estimates from absolute NMHC concentrations and NMHC ratios assuming zero background (the “photochemical clock” method) shows similar distributions but reveals systematic high bias in the estimates from ratios. Estimates of K are ∼0.1 day−1 but show more sensitivity to the prior distribution assumed.
Resumo:
The atmospheric composition of the central North Atlantic region has been sampled using the FAAM BAe146 instrumented aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) campaign, part of the wider International Consortium for Atmospheric Research on Transport and Transformation (ICARTT). This paper presents an overview of the ITOP campaign. Between late July and early August 2004, twelve flights comprising 72 hours of measurement were made in a region from approximately 20 to 40°W and 33 to 47°N centered on Faial Island, Azores, ranging in altitude from 50 to 9000 m. The vertical profiles of O3 and CO are consistent with previous observations made in this region during 1997 and our knowledge of the seasonal cycles within the region. A cluster analysis technique is used to partition the data set into air mass types with distinct chemical signatures. Six clusters provide a suitable balance between cluster generality and specificity. The clusters are labeled as biomass burning, low level outflow, upper level outflow, moist lower troposphere, marine and upper troposphere. During this summer, boreal forest fire emissions from Alaska and northern Canada were found to provide a major perturbation of tropospheric composition in CO, PAN, organic compounds and aerosol. Anthropogenic influenced air from the continental boundary layer of the USA was clearly observed running above the marine boundary layer right across the mid-Atlantic, retaining high pollution levels in VOCs and sulfate aerosol. Upper level outflow events were found to have far lower sulfate aerosol, resulting from washout on ascent, but much higher PAN associated with the colder temperatures. Lagrangian links with flights of other aircraft over the USA and Europe show that such signatures are maintained many days downwind of emission regions. Some other features of the data set are highlighted, including the strong perturbations to many VOCs and OVOCs in this remote region.
Resumo:
A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O3 production and 24% in O3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales (averaging 6.25 days) were derived from CO changes. Observed and simulated O3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O3 production. The possible impact of this biomass burning plume on O3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O3 increases and elevated CO levels. The model predicts significant changes in O3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O3 impact of Alaskan fires can be potentially significant over Europe.
Resumo:
This paper is based on alkyl nitrate measurements made over the North Atlantic as part of the International Consortium for Research on Atmospheric Transport and Transformation (ICARTT). The focus is on the analysis of air samples collected on the UK BAe-146 aircraft during the Intercontinental Transport of Ozone and Precursors (ITOP) project, but air samples collected on board the NASA DC-8 and NOAA WP-3D aircraft as part of a Lagrangian experiment are also used. The ratios between the alkyl nitrates and their parent hydrocarbons are compared with those expected from chemical theory. Further, a box model is run to investigate the temporal evolution of the alkyl nitrates in three Lagrangian case studies and compared to observations. The air samples collected during ITOP do not appear to be strongly influenced by oceanic sources, but rather are influenced by emissions from the N.E. United States and from Alaskan fires. There also appears to be a widespread common source of ethyl nitrate and 1-propyl nitrate other than from their parent hydrocarbons. The general agreement between the alkyl nitrate data and photochemical theory suggests that during the first few days of transport from the source region, photochemical production of alkyl nitrates, and thus ozone, had taken place. The observations in the more photochemically processed air masses are consistent with the alkyl nitrate production reactions no longer dominating the peroxy radical self/cross reactions. Further, the results also suggest that the rates of photochemical processing in the Alaskan smoke plumes were small.
Resumo:
A cell by cell anisotropic adaptive mesh Arbitrary Lagrangian Eulerian (ALE) method for the solution of the Euler equations is described. An efficient approach to equipotential mesh relaxation on anisotropically refined meshes is developed. Results for two test problems are presented.