993 resultados para Lactose-specific lectin
Resumo:
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an similar to 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix ( bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding domain specific to the plant kingdom. Little is known about how the TCP domain interacts with its target DNA. We report biochemical characterization and DNA binding properties of a TCP member in Arabidopsis thaliana, TCP4. We have shown that the 58-residue domain of TCP4 is essential and sufficient for binding to DNA and possesses DNA binding parameters comparable to canonical bHLH proteins. Using a yeast-based random mutagenesis screen and site-directed mutants, we identified the residues important for DNA binding and dimer formation. Mutants defective in binding and dimerization failed to rescue the phenotype of an Arabidopsis line lacking the endogenous TCP4 activity. By combining structure prediction, functional characterization of the mutants, and molecular modeling, we suggest a possible DNA binding mechanism for this class of transcription factors.
Resumo:
Most human ACTA1 skeletal actin gene mutations cause dominant, congenital myopathies often with severely reduced muscle function and neonatal mortality. High sequence conservation of actin means many mutated ACTA1 residues are identical to those in the Drosophila Act88F, an indirect flight muscle specific sarcomeric actin. Four known Act88F mutations occur at the same actin residues mutated in ten ACTA1 nemaline mutations, A138D/P, R256H/L, G268C/D/R/S and R372C/S. These Act88F mutants were examined for similar muscle phenotypes. Mutant homozygotes show phenotypes ranging from a lack of myofibrils to almost normal sarcomeres at eclosion. Aberrant Z-disc-like structures and serial Z-disc arrays, ‘zebra bodies’, are observed in homozygotes and heterozygotes of all four Act88F mutants. These electron-dense structures show homologies to human nemaline bodies/rods, but are much smaller than those typically found in the human myopathy. We conclude that the Drosophila indirect flight muscles provide a good model system for studying ACTA1 mutations.
Resumo:
A study has been carried out on the non-specific interference due to serum in the avidin biotin micro-ELISA for monkey chorionic gonadotropin. Results suggest that it is not due to any proteolytic activity in the serum, but immunoglobulin or associated factors interfering at the level of antigen-antibody interaction. This interference was eliminated by heating samples at 60°C for 30 min.
Resumo:
To establish the crucial role of lipopolysaccharide in the initial recognition event of symbiotic peanut-Rhizobium system the ability of various surface polysaccharides isolated from Bradyrhizobium arachis to inhibit the precipitin reaction between peanut agglutinin and asialoganglioside: deoxycholate (1:1) micelles was estimated. It was compared with that of nonsymbiotic systems e.g. Bradyrhizobium japonicum, Bradyrhizobium ciceris and Escherichia coli. Peanut agglutinin was found to interact more strongly with the lipopolysaccharide of Bradyrhizobium arachis than the exopolysaccharide or capsular polysaccharide. The inhibitory capacity of lipopolysaccharides from homologous and heterologous Bradyrhizobium as measured in terms of the concentration necessary for 50 percent inhibition of precipitin reaction were 1428, 500, 410, and 277 times less than that of lactose for Bradyrhizobium arachis, B. japonicum, B. ciceris and Escherichia coli, respectively. These results support that host lectin peanut agglutinin can recognize homologous Bradyrhizobium lipopolysaccharide by virtue of its binding specificity of higher magnitude.
Resumo:
CMPs enable simultaneous execution of multiple applications on the same platforms that share cache resources. Diversity in the cache access patterns of these simultaneously executing applications can potentially trigger inter-application interference, leading to cache pollution. Whereas a large cache can ameliorate this problem, the issues of larger power consumption with increasing cache size, amplified at sub-100nm technologies, makes this solution prohibitive. In this paper in order to address the issues relating to power-aware performance of caches, we propose a caching structure that addresses the following: 1. Definition of application-specific cache partitions as an aggregation of caching units (molecules). The parameters of each molecule namely size, associativity and line size are chosen so that the power consumed by it and access time are optimal for the given technology. 2. Application-Specific resizing of cache partitions with variable and adaptive associativity per cache line, way size and variable line size. 3. A replacement policy that is transparent to the partition in terms of size, heterogeneity in associativity and line size. Through simulation studies we establish the superiority of molecular cache (caches built as aggregations of molecules) that offers a 29% power advantage over that of an equivalently performing traditional cache.
Resumo:
The binding of a 14 kDa beta-galactoside animal lectin to splenocytes has been studied in detail. The binding data show that there are two classes of binding sites on the cells for the lectin: a high-affinity site with a K-a ranging from 1.1 x 10(6) to 5.1 x 10(5) M-1 and a low affinity binding site with a K-a ranging from 7.7 x 10(4) to 3.4 x 10(4) M-1 The number of receptors per cell for the high- and low-affinity sites is 9 +/- 3 x 10(6) and 2.5 +/- 0.5 x 10(6) respectively. The temperature dependence of the K value yielded the thermodynamic parameters. The energetics of this interaction shows that, although this interaction is essentially enthalpically driven (Delta H - 21 kJ lambda mol(-1)) for the high-affinity sites, there is a very favorable entropy contribution to the free energy of this interaction (-T Delta S - 17.5 Jmol(-1)), suggesting that hydrophobic interaction may also be playing a role in this interaction. Lactose brought about a 20% inhibition of this interaction, whereas the glycoprotein asialofetuin brought about a 75 % inhibition, suggesting that complex carbohydrate structures are involved in the binding of galectin-1 to splenocytes, Galectin-1 also mediated the binding and adhesion of splenocytes to the extracellular matrix glycoprotein laminin, suggesting a role for it in cell-matrix interactions. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
DNA protein interactions that occur during transcription initiation play an important role in regulating gene expression. To initiate transcription, RNA polymerase (RNAP) binds to promoters in a sequence-specific fashion. This is followed by a series of steps governed by the equilibrium binding and kinetic rate constants, which in turn determine the overall efficiency of the transcription process. We present here the first detailed kinetic analysis of promoter RNAP interactions during transcription initiation in the sigma(A)-dependent promoters P-rrnAPCL1, P-rrnB and P-gyr of Mycobacterium smegmatis. The promoters show comparable equilibrium binding affinity but differ significantly in open complex formation, kinetics of isomerization and promoter clearance. Furthermore, the two rrn promoters exhibit varied kinetic properties during transcription initiation and appear to be subjected to different modes of regulation. In addition to distinct kinetic patterns, each one of the housekeeping promoters studied has its own rate-limiting step in the initiation pathway, indicating the differences in their regulation.
Resumo:
Immunoblotting studies using highly specific polyclonal anti-histone H1t-IgG, which was extensively characterized by us previously, did not produce a signal with any of the histone H1 subtypes of either 1-day-old or adult rat ovarian nuclei. The absence of histone H1t in ovarian nuclei was also confirmed by indirect immunofluorescence studies. It is concluded, therefore, that histone H1t is truly a testis-specific histone variant and not a meiotic-specific variant.
Resumo:
In order to explore idiotypic, anti-idiotypic, and anti-anti-idiotypic responses to allergens, BALB/c mice were immunized with affinity- purified human idiotypic antibodies directed against a highly purified shrimp allergen. This resulted in the production of anti-idiotypic antibodies which were quantitated by using rabbit idiotypic antibodies raised against the same purified allergen. The mouse anti-idiotypic antibodies recognized shrimp-specific human idiotypic antibodies of the IgE isotype from 18 of 20 individuals, and IgG antibodies from 14 of 20 shrimp-sensitive patients. Immunization of BALB/c mice with affinity- purified, allergen-specific anti-idiotypic antibodies induced anti- allergen IgE and IgG responses in the absence of the allergen. This paper thus presents evidence that anti-idiotypic antibodies raised against allergen-specific idiotypic antibodies may substitute for the original allergen in the induction of allergen-specific idiotypic antibodies. The demonstration of shared idiotopes on IgG and IgE antibodies in the sera of shrimp-sensitive patients supports the use of allergen-specific anti-idiotypic antibodies as surrogate allergens.
Resumo:
The CCEM method (Contact Criteria and Energy Minimisation) has been developed and applied to study protein-carbohydrate interactions. The method uses available X-ray data even on the native protein at low resolution (above 2.4 Å) to generate realistic models of a variety of proteins with various ligands.The two examples discussed in this paper are arabinose-binding protein (ABP) and pea lectin. The X-ray crystal structure data reported on ABP-β-l-arabinose complex at 2.8, 2.4 and 1.7 Å resolution differ drastically in predicting the nature of the interactions between the protein and ligand. It is shown that, using the data at 2.4 Å resolution, the CCEM method generates complexes which are as good as the higher (1.7 Å) resolution data. The CCEM method predicts some of the important hydrogen bonds between the ligand and the protein which are missing in the interpretation of the X-ray data at 2.4 Å resolution. The theoretically predicted hydrogen bonds are in good agreement with those reported at 1.7 Å resolution. Pea lectin has been solved only in the native form at 3 Å resolution. Application of the CCEM method also enables us to generate complexes of pea lectin with methyl-α-d-glucopyranoside and methyl-2,3-dimethyl-α-d-glucopyranoside which explain well the available experimental data in solution.
Resumo:
The change in the specific heat by the application of magnetic field up to 161 for high temperature superconductor system for DyBa2Cu3O7-x by Revaz et al. [23] is examined through the phenomenological Ginzburg-Landau(G-L) theory of anisotropic Type-II superconductors. The observed specific heat anomaly near T-c with magnetic field is explained qualitatively through the expression <Delta C > = (B-a/T-c) t/(1 - t)(alpha Theta(gamma)lambda(2)(m)(0)), which is the anisotropic formulation of the G-L theory in the London limit developed by Kogan and coworkers; relating to the change in specific heat Delta C for the variation of applied magnetic field for different orientations with c-axis. The analysis of this equation explains satisfactorily the specific heat anomaly near T-c and determines the anisotropic ratio gamma as 5.608, which is close to the experimental value 5.3 +/- 0.5given in the paper of Revaz et al. for this system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The morbilliviruses which infect ruminants, rinderpest (RPV) and peste des petits ruminants (PPRV), are difficult to distinguish serologically. They can be distinguished by differential neutralisation tests and by the migration of the major virus structural protein, the nucleocapsid protein, on polyacrylamide gels. Both these methods are time consuming and require the isolation of live virus for identification; they are not suitable for analysis of material directly from post-mortem specimens. We describe a rapid method for differential diagnosis of infections caused by RPV or PPRV, which uses specific cDNA probes, derived from the mRNAs for the nucleocapsid protein of each virus, which can be used to distinguish unequivocally the two virus types rapidly.
Resumo:
Lightweight grids for lead-acid battery grids have been prepared from acrylonitrile. butadiene styrene (ABS) copolymer followed by coating with lead. Subsequently, the grids have been electrochemically coated with a conductive and corrosion-resistant layer of polyaniline. These grids are about 75% lighter than those employed in conventional lead-acid batteries. Commercial-grade 6V/3.5 Ah (C-20-rate) lead-acid batteries have been assembled and characterized employing positive and negative plates constituting these grids. The specific energy of such a lead-acid battery is about 50 Wh/kg. The batteries can withstand fast charge-discharge duty cycles.
Resumo:
Glycomics is the study of comprehensive structural elucidation and characterization of all glycoforms found in nature and their dynamic spatiotemporal changes that are associated with biological processes. Glycocalyx of mammalian cells actively participate in cell-cell, cell-matrix, and cell-pathogen interactions, which impact embryogenesis, growth and development, homeostasis, infection and immunity, signaling, malignancy, and metabolic disorders. Relative to genomics and proteomics, glycomics is just growing out of infancy with great potential in biomedicine for biomarker discovery, diagnosis, and treatment. However, the immense diversity and complexity of glycan structures and their multiple modes of interactions with proteins pose great challenges for development of analytical tools for delineating structure function relationships and understanding glycocode. Several tools are being developed for glycan profiling based on chromatography,m mass spectrometry, glycan microarrays, and glyco-informatics. Lectins, which have long been used in glyco-immunology, printed on a microarray provide a versatile platform for rapid high throughput analysis of glycoforms of biological samples. Herein, we summarize technological advances in lectin microarrays and critically review their impact on glycomics analysis. Challenges remain in terms of expansion to include nonplant derived lectins, standardization for routine clinical use, development of recombinant lectins, and exploration of plant kingdom for discovery of novel lectins.