998 resultados para LOW-DIMENSION
Resumo:
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Resumo:
Malaria has been eliminated from over 40 countries with an additional 39 currently planning for, or committed to, elimination. Information on the likely impact of available interventions, and the required time, is urgently needed to help plan resource allocation. Mathematical modelling has been used to investigate the impact of various interventions; the strength of the conclusions is boosted when several models with differing formulation produce similar data. Here we predict by using an individual-based stochastic simulation model of seasonal Plasmodium falciparum transmission that transmission can be interrupted and parasite reintroductions controlled in villages of 1,000 individuals where the entomological inoculation rate is <7 infectious bites per person per year using chemotherapy and bed net strategies. Above this transmission intensity bed nets and symptomatic treatment alone were not sufficient to interrupt transmission and control the importation of malaria for at least 150 days. Our model results suggest that 1) stochastic events impact the likelihood of successfully interrupting transmission with large variability in the times required, 2) the relative reduction in morbidity caused by the interventions were age-group specific, changing over time, and 3) the post-intervention changes in morbidity were larger than the corresponding impact on transmission. These results generally agree with the conclusions from previously published models. However the model also predicted changes in parasite population structure as a result of improved treatment of symptomatic individuals; the survival probability of introduced parasites reduced leading to an increase in the prevalence of sub-patent infections in semi-immune individuals. This novel finding requires further investigation in the field because, if confirmed, such a change would have a negative impact on attempts to eliminate the disease from areas of moderate transmission.
Resumo:
With the rapid development of world-wide wind energy generation using doubly fed induction generations (DFIGs), low voltage ride through (LVRT) has become a great concern. This paper focuses on a unique topology of DFIG called IG connection mode to help the DFIG ride through grid faults smoothly. Transient analysis of IG connection mode is carried out to derive the generator currents. With this analysis, the control strategy for IG connection mode DFIG was developed. From the simulation results, it is clearly visible that IG mode could work in both normal and low grid voltage conditions. Simulation results clearly show that the DFIG with the proposed mode switching control could smoothly ride through low voltage grid faults while satisfying grid code requirements.
Resumo:
A mode switching doubly fed induction generator (MSDFIG) scheme is proposed for the purpose of achieving low-voltage ride-through for wind turbines. The MSDFIG operates as a doubly fed induction generator (DFIG) under normal condition but upon the detection of a low-voltage incident, the generator is to smoothly transfer to operate under the induction generator mode through the switching in of a set of stator-side crowbar. The MSDFIG automatically reverts back to the DFIG mode when network voltage recovers. A new strategy on the control of the crowbar resistance is included. Analysis shows that the proposed MSDFIG scheme can ride through the complete low-voltage and voltage recovery stages. Effectiveness of the scheme is demonstrated through simulation and experiment studies.
Resumo:
As printed and flexible plastic electronic gadgets become increasingly viable today, there is a need to develop materials that suit the fabrication processes involved. Two desirable requirements are solution-processable active materials or precursors and low-temperature processability. In this article, we describe a straightforward method of depositing ZnO films by simple spin coating of an organometallic diethylzinc precursor solution and annealing the resulting film at low temperatures (≤200 °C) without involving any synthetic steps. By controlling the humidity in which annealing is conducted, we are able to adjust the intrinsic doping level and carrier concentration in diethylzinc-derived ZnO. Doped or conducting transport layers are greatly preferable to undoped layers as they enable low-resistance contacts and minimize the potential drops. This ability to controllably realize doped ZnO is a key feature of the fabrication process that we describe in this article. We employ field-effect measurements as a diagnostic tool to measure doping levels and mobilities in ZnO and demonstrate that doped ZnO with high charge carrier concentration is ideal for solar cell applications. Respectable power conversion efficiencies (up to 4.5%) are achieved in inverted solar cells that incorporate diethylzinc-derived ZnO films as the electron transport layer and organic blends as the active material. Extensions of this approach to grow ternary and quaternary films with organometallic precursor chemicals will enable solution based growth of a number of semiconductor films as well as a method to dope them.
Resumo:
A fluorenone based alternating copolymer (PFN-DPPF) with a furan based fused aromatic moiety has been designed and synthesized. PFN-DPPF exhibits a small band gap with a lower HOMO value. Testing this polymer semiconductor as the active layer in organic thin-film transistors results in hole mobilities as high as 0.15 cm2 V-1 s-1 in air.
Resumo:
Novel low bandgap solution processable diketopyrrolopyrrole (DPP) based derivatives functionalized with electron withdrawing end capping groups (trifluoromethylphenyl and trifluorophenyl) were synthesized, and their photophysical, electrochemical and photovoltaic properties were investigated. These compounds showed optical bandgaps ranging from 1.81 to 1.94 eV and intense absorption bands that cover a wide range from 300 to 700 nm, attributed to charge transfer transition between electron rich phenylene-thienylene moieties and the electron withdrawing diketopyrrolopyrrole core. All of the compounds were found to be fluorescent in solution with an emission wavelength ranging from 600 to 800 nm. Cyclic voltammetry indicated reversible oxidation and reduction processes with tuning of HOMO-LUMO energy levels. Bulk heterojunction (BHJ) solar cells using poly(3-hexylthiophene) (P3HT) as the electron donor with these new acceptors were used for fabrication. The best power conversion efficiencies (PCE) using 1:2 donor-acceptor by weight mixture were 1% under simulated AM 1.5 solar irradiation of 100 mW cm-2. These findings suggested that a DPP core functionalized with electron accepting end-capping groups were a promising new class of solution processable low bandgap n-type organic semiconductors for organic solar cell applications.
Resumo:
A new, solution-processable, low-bandgap, diketopyrrolopyrrole- benzothiadiazole-based, donor-acceptor polymer semiconductor (PDPP-TBT) is reported. This polymer exhibits ambipolar charge transport when used as a single component active semiconductor in OTFTs with balanced hole and electron mobilities of 0.35 cm2 V-1s-1 and 0.40 cm 2 V-1s-1, respectively. This polymer has the potential for ambipolar transistor-based complementary circuits in printed electronics.
Resumo:
A novel solution processable donor-acceptor (D-A) based low band gap polymer semiconductor poly{3,6-difuran-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4- c]pyrrole-1,4-dione-alt-thienylenevinylene} (PDPPF-TVT), was designed and synthesized by a Pd-catalyzed Stille coupling route. An electron deficient furan based diketopyrrolopyrrole (DPP) block and electron rich thienylenevinylene (TVT) donor moiety were attached alternately in the polymer backbone. The polymer exhibited good solubility, film forming ability and thermal stability. The polymer exhibits wide absorption bands from 400 nm to 950 nm (UV-vis-NIR region) with absorption maximum centered at 782 nm in thin film. The optical band gap (Eoptg) calculated from the polymer film absorption onset is around 1.37 eV. The π-energy band level (ionization potential) calculated by photoelectron spectroscopy in air (PESA) for PDPPF-TVT is around 5.22 eV. AFM and TEM analyses of the polymer reveal nodular terrace morphology with optimized crystallinity after 200 °C thermal annealing. This polymer exhibits p-channel charge transport characteristics when used as the active semiconductor in organic thin-film transistor (OTFT) devices. The highest hole mobility of 0.13 cm 2 V -1 s -1 is achieved in bottom gate and top-contact OTFT devices with on/off ratios in the range of 10 6-10 7. This work reveals that the replacement of thiophene by furan in DPP copolymers exhibits such a high mobility, which makes DPP furan a promising block for making a wide range of promising polymer semiconductors for broad applications in organic electronics.
Resumo:
The conventional measures of benchmarking focus mainly on the water produced or water delivered, and ignore the service quality, and as a result the 'low-cost and low-quality' utilities are rated as efficient units. Benchmarking must credit utilities for improvements in service delivery. This study measures the performance of 20 urban water utilities using data from an Asian Development Bank survey of Indian water utilities in 2005. It applies data envelopment analysis to measure the performance of utilities. The results reveal that incorporation of a quality dimension into the analysis significantly increases the average performance of utilities. The difference between conventional quantity-based measures and quality-adjusted estimates implies that there are significant opportunity costs of maintaining the quality of services in water delivery.
Resumo:
This special issue of the Journal of Field Robotics focuses on low altitude flight of UAVs with a particular emphasis on fully implemented systems that were tested in relevant environments or deployed in regular operations.
Resumo:
Introduction Clinical guidelines for the treatment of chronic low back pain suggest the use of supervised exercise. Motor control (MC) based exercise is widely used within clinical practice but its efficacy is equivalent to general exercise therapy. MC exercise targets the trunk musculature. Considering the mechanical links between the hip, pelvis, and lumbar spine, surprisingly little focus has been on investigating the contribution of the hip musculature to lumbopelvic support. The purpose of this study is to compare the efficacy of two exercise programs for the treatment of non-specific low back pain (NSLBP). Methods Eighty individuals aged 18-65 years of age were randomized into two groups to participate in this trial. The primary outcome measures included self-reported pain intensity (0-100mm VAS) and percent disability (Oswestry Disability Index V2). Bilateral measures of hip strength (N/kg) and two dimensional frontal plane mechanics (º) were the secondary outcomes. Outcomes were measured at baseline and following a six-week home based exercise program including weekly sessions of real-time ultrasound imaging. Results Within group comparisons revealed clinically meaningful reductions in pain for both groups. The MC exercise only (N= 40, xˉ =-20.9mm, 95%CI -25.7, -16.1) and the combined MC and hip exercise (N= 40, xˉ = -24.9mm, 95%CI -30.8, -19.0). There was no statistical difference in the change of pain (xˉ =-4.0mm, t= -1.07, p=0.29, 95%CI -11.5, 3.5) or disability (xˉ =-0.3%, t=-0.19, p=0.85, 95%CI -11.5, 3.5) between groups. Conclusion Both exercise programs had similar and positive effects on NSLBP which support the use of the home based exercise programs with weekly supervised visits. However, the addition of specific hip strengthening exercises to a MC based exercise program did not result in significantly greater reductions in pain or disability. Trial Registration NCTO1567566 Funding: Worker’s Compensation Board Alberta Research Grant.
Resumo:
Attention has recently focussed on MgB2 superconductors (Tc~39K) which can be formed into wires with high material density and viable critical current densities (Jc)1. However, broader utilisation of this diboride and many others is likely to occur when facile synthesis for bulk applications is developed. To date, common synthesis methods include high temperature sintering of mixed elemental powders2, combustion synthesis3, mechano-chemical mixing with high temperature sintering4 and high pressure (~GPa region) with high temperature. In this work, we report on a lower temperature, moderate (<4MPa) pressure method to synthesise metal diborides.
Resumo:
Private title insurance has been the subject of much debate by law reform bodies and academics. This article adds a new dimension to the discussion by analysing its role against a recent scenario where a nun was betrayed by the actions of her brother, and compensation payable from the assurance fund, after much challenge by the registrar, amounted to in excess of $4 million.We ask whether the slow burning of title insurance into the psyche of Australian home purchasers will see state-based assurance fundings looking to minismise their role in the Torrens system. We also query how the rather more immediate electronic establishment of electronic conveyancing will alter the balance between the assurance fund, private title insurance and the increasing responsibilities on stakeholdes involved in conveyancing.
Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax