888 resultados para LIPOPROTEIN-CHOLESTEROL-GOALS
Resumo:
Cholesterol feeding reduces the mRNAs encoding multiple enzymes in the cholesterol biosynthetic pathway and the low density lipoprotein receptor in livers of hamsters. Here we show that cholesterol feeding also reduces the levels of the nuclear NH2-terminal domains of sterol regulatory element binding proteins (SREBPs), which activate transcription of sterol-regulated genes. We show that livers of hamsters, like those of mice and humans, predominantly produce SREBP-2 and the 1c isoform of SREBP-1. Both are produced as membrane-bound precursors that must be proteolyzed to release the transcriptionally active NH2-terminal domains. Diets containing 0.1% to 1.0% cholesterol decreased the amount of nuclear SREBP-1c without affecting the amount of the membrane precursor or its mRNA, suggesting that cholesterol inhibits the proteolytic processing of SREBP-1 in liver as it does in cultured cells. Cholesterol also appeared to reduce the proteolytic processing of SREBP-2. In addition, at high levels of dietary cholesterol the mRNA encoding SREBP-2 declined and the amount of the precursor also fell, suggesting that cholesterol accumulation also may inhibit transcription of the SREBP-2 gene. The high-cholesterol diets reduced the amount of low density lipoprotein receptor mRNA by 30% and produced a more profound 70–90% reduction in mRNAs encoding 3-hydroxy-3-methylglutaryl CoA synthase and reductase. Treatment with lovastatin and Colestipol, which increases hepatic demands for cholesterol, increased the amount of SREBP-2 mRNA as well as the precursor and nuclear forms of the protein. This treatment caused a reciprocal decline in SREBP-1c mRNA and protein. Considered together, these data suggest that SREBPs play important roles in controlling transcription of sterol-regulated genes in liver, as they do in cultured cells.
Resumo:
Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis.
Resumo:
Giardia lamblia, like most human intestinal parasitic protozoa, sustains fundamental morphological and biochemical changes to survive outside the small intestine of its mammalian host by differentiating into an infective cyst. However, the stimulus that triggers this differentiation remains totally undefined. In this work, we demonstrate the induction of cyst formation in vitro when trophozoites are starved for cholesterol. Expression of cyst wall proteins was detected within encystation-specific secretory vesicles 90 min after the cells were placed in lipoprotein-deficient TYI-S-33 medium. Four cloned lines derived from two independent Giardia isolates were tested, and all formed cysts similarly. Addition of cholesterol, low density or very low density lipoproteins to the lipoprotein-deficient culture medium, inhibited the expression of cyst wall proteins, the generation of encystation-specific vesicles, and cyst wall biogenesis. In contrast, high density lipoproteins, phospholipids, bile salts, or fatty acids had little or no effect. These results indicate that cholesterol starvation is necessary and sufficient for the stimulation of Giardia encystation in vitro and, likely, in the intestine of mammalian hosts.
Resumo:
Lipoprotein lipase (LPL) is a key enzyme in the hydrolysis of triglyceride-rich lipoproteins. Conflicting results have been reported concerning its role in atherogenesis. To determine the effects of the overexpressed LPL on diet-induced atherosclerosis, we have generated low density lipoprotein receptor (LDLR) knockout mice that overexpressed human LPL transgene (LPL/LDLRKO) and compared their plasma lipoproteins and atherosclerosis with those in nonexpressing LDLR-knockout mice (LDLRKO). On a normal chow diet, LPL/LDLRKO mice showed marked suppression of mean plasma triglyceride levels (32 versus 236 mg/dl) and modest decrease in mean cholesterol levels (300 versus 386 mg/dl) as compared with LDLRKO mice. Larger lipoprotein particles of intermediate density lipoprotein (IDL)/LDL were selectively reduced in LPL/LDLRKO mice. On an atherogenic diet, both mice exhibited severe hypercholesterolemia. But, mean plasma cholesterol levels in LPL/ LDLRKO mice were still suppressed as compared with that in LDLRKO mice (1357 versus 2187 mg/dl). Marked reduction in a larger subfraction of IDL/LDL, which conceivably corresponds to remnant lipoproteins, was observed in the LPL/LDLRKO mice. LDLRKO mice developed severe fatty streak lesions in the aortic sinus after feeding with the atherogenic diet for 8 weeks. In contrast, mean lesion area in the LPL/LDLRKO mice was 18-fold smaller than that in LDLRKO mice. We suggest that the altered lipoprotein profile, in particular the reduced level of remnant lipoproteins, is mainly responsible for the protection by LPL against atherosclerosis.
Resumo:
The very low density lipoprotein (VLDL) receptor is a recently cloned member of the low density lipoprotein (LDL) receptor family that mediates the binding and uptake of VLDL when overexpressed in animal cells. Its sequence is 94% identical in humans and rabbits and 84% identical in humans and chickens, implying a conserved function. Its high level expression in muscle and adipose tissue suggests a role in VLDL triacylglycerol delivery. Mutations in the chicken homologue cause female sterility, owing to impaired VLDL and vitellogenin uptake during egg yolk formation. We used homologous recombination in mouse embryonic stem cells to produce homozygous knockout mice that lack immunodetectable VLDL receptors. Homozygous mice of both sexes were viable and normally fertile. Plasma levels of cholesterol, triacylglycerol, and lipoproteins were normal when the mice were fed normal, high-carbohydrate, or high-fat diets. The sole abnormality detected was a modest decrease in body weight, body mass index, and adipose tissue mass as determined by the weights of epididymal fat pads. We conclude that the VLDL receptor is not required for VLDL clearance from plasma or for ovulation in mice.
Resumo:
The low-density lipoprotein (LDL) receptor plays a central role in mammalian cholesterol metabolism, clearing lipoproteins which bear apolipoproteins E and B-100 from plasma. Mutations in this molecule are associated with familial hypercholesterolemia, a condition which leads to an elevated plasma cholesterol concentration and accelerated atherosclerosis. The N-terminal segment of the LDL receptor contains a heptad of cysteine-rich repeats that bind the lipoproteins. Similar repeats are present in related receptors, including the very low-density lipoprotein receptor and the LDL receptor-related protein/alpha 2-macroglobulin receptor, and in proteins which are functionally unrelated, such as the C9 component of complement. The first repeat of the human LDL receptor has been expressed in Escherichia coli as a glutathione S-transferase fusion protein, and the cleaved and purified receptor module has been shown to fold to a single, fully oxidized form that is recognized by the monoclonal antibody IgG-C7 in the presence of calcium ions. The three-dimensional structure of this module has been determined by two-dimensional NMR spectroscopy and shown to consist of a beta-hairpin structure, followed by a series of beta turns. Many of the side chains of the acidic residues, including the highly conserved Ser-Asp-Glu triad, are clustered on one face of the module. To our knowledge, this structure has not previously been described in any other protein and may represent a structural paradigm both for the other modules in the LDL receptor and for the homologous domains of several other proteins. Calcium ions had only minor effects on the CD spectrum and no effect on the 1H NMR spectrum of the repeat, suggesting that they induce no significant conformational change.
Resumo:
Feedback regulation of transcription from the low density lipoprotein (LDL) receptor gene is fundamentally important in the maintenance of intracellular sterol balance. The region of the LDL receptor promoter responsible for normal sterol regulation contains adjacent binding sites for the ubiquitous transcription factor Sp1 and the cholesterol-sensitive sterol regulatory element-binding proteins (SREBPs). Interestingly, both are essential for normal sterolmediated regulation of the promoter. The cooperation by Sp1 and SREBP-1 occurs at two steps in the activation process. SREBP-1 stimulates the binding of Sp1 to its adjacent recognition site in the promoter followed by enhanced stimulation of transcription after both proteins are bound to DNA. In the present report, we have defined the protein domains of Sp1 that are required for both synergistic DNA binding and transcriptional activation. The major activation domains of Sp1 that have previously been shown to be essential to activation of promoters containing multiple Sp1 sites are required for activation of the LDL receptor promoter. Additionally, the C domain is also crucial. This slightly acidic approximately 120-amino acid region is not required for efficient synergistic activation by multiple Sp1 sites or in combination with other recently characterized transcriptional regulators. We also show that Sp1 domain C is essential for full, enhanced DNA binding by SREBP-1. Taken together with other recent studies on the role of Sp1 in promoter activation, the current experiments suggest a unique combinatorial mechanism for promoter activation by two distinct transcription factors that are both essential to intracellular cholesterol homeostasis.
Resumo:
Atherosclerosis, an underlying cause of myocardial infarction, stroke, and other cardiovascular diseases, consists of focal plaques characterized by cholesterol deposition, fibrosis, and inflammation. The presence of activated T lymphocytes and macrophages and high expression of HLA class II molecules are indicative of a local immunologic activation in the atherosclerotic plaque, but the antigen(s) involved has not yet been identified. We established T-cell clones from human atherosclerotic plaques using polyclonal mitogens as stimuli and exposed the clones to potential antigens in the presence of autologous monocytes as antigen-presenting cells. Four of the 27 CD4+ clones responded to oxidized low density lipoprotein (oxLDL) by proliferation and cytokine secretion; this response was dependent on autologous antigen-presenting cells and restricted by HLA-DR. All clones that responded to oxLDL secreted interferon gamma upon activation, but only one produced interleukin 4, suggesting that the response to oxLDL results in immune activation and inflammation but may not be a strong stimulus to antibody production. No significant response to oxLDL could be detected in CD4+ T-cell clones derived from the peripheral blood of the same individuals. Together, the present data suggest that the inflammatory infiltrate in the atherosclerotic plaque is involved in a T-cell-dependent, autoimmune response to oxLDL.
Resumo:
The influence of thermally induced changes in the lipid core structure on the oxidative resistance of discrete, homogeneous low density lipoprotein (LDL) subspecies (d, 1.0297-1.0327 and 1.0327-1.0358 g/ml) has been evaluated. The thermotropic transition of the LDL lipid core at temperatures between 15 degrees C and 37 degrees C, determined by differential scanning calorimetry, exerted significant effects on the kinetics of copper-mediated LDL oxidation expressed in terms of intrinsic antioxidant efficiency (lag time) and diene production rate. Thus, the temperature coefficients of oxidative resistance and maximum oxidation rate showed break points at the core transition temperature. Temperature-induced changes in copper binding were excluded as the molecular basis of such effects, as the saturation of LDL with copper was identical below and above the core transition. At temperatures below the transition, the elevation in lag time indicated a greater resistance to oxidation, reflecting a higher degree of antioxidant protection. This effect can be explained by higher motional constraints and local antioxidant concentrations, the latter resulting from the freezing out of antioxidants from crystalline domains of cholesteryl esters and triglycerides. Below the transition temperature, the conjugated diene production rate was decreased, a finding that correlated positively with the average size of the cooperative units of neutral lipids estimated from the calorimetric transition width. The reduced accessibility and structural hindrance in the cluster organization of the core lipids therefore inhibits peroxidation. Our findings provide evidence for a distinct effect of the dynamic state of the core lipids on the oxidative susceptibility of LDL and are therefore relevant to the atherogenicity of these cholesterol-rich particles.
Resumo:
HepG2 cells were stably transfected with human caveolin-1 (HepG2/cav cells). Transfection resulted in expression of caveolin-1 mRNA, a high abundance of caveolin-1 protein, and the formation of caveolae on the plasma membrane. Cholesterol efflux from HepG2/cav cells was 280 and 45% higher than that from parent HepG2 cells when human plasma and human apoA-I, respectively, were used as acceptors. The difference in efflux was eliminated by treatment of cells with progesterone. There was no difference in cholesterol efflux to cyclodextrin. Cholesterol efflux from plasma membrane vesicles was similar for the two cell types. Transfection led to a 40% increase in the amount of plasma membrane cholesterol in cholesterol-rich domains ( caveolae and/or rafts) and a 67% increase in the rate of cholesterol trafficking from intracellular compartments to these domains. Cholesterol biosynthesis in HepG2/cav cells was increased by 2-fold, and cholesterol esterification was reduced by 50% compared with parent HepG2 cells. The proliferation rate of transfected cells was significantly lower than that of non-transfected cells. Transfection did not affect expression of ABCA1 or the abundance of ABCA1 protein, but decreased secretion of apoA-I. We conclude that overexpression of caveolin-1 in hepatic cells stimulates cholesterol efflux by enhancing transfer of cholesterol to cholesterol-rich domains in the plasma membrane.
Resumo:
The Wilms' tumour suppressor gene, WT1, encodes a zinc-finger protein that is mutated in Wilms' tumours and other malignancies. WT1 is one of the earliest genes expressed during kidney development. WT1 proteins can activate and repress putative target genes in vitro, although the in vivo relevance of such target genes often remains unverified. To better understand the role of WT1 in tumorigenesis and kidney development, we need to identify downstream target genes. In this study, we have expression pro. led human embryonic kidney 293 cells stably transfected to allow inducible WT1 expression and mouse mesonephric M15 cells transfected with a WT1 antisense construct to abolish endogenous expression of all WT1 isoforms to identify WT1-responsive genes. The complementary overlap between the two cell lines revealed a pronounced repression of genes involved in cholesterol biosynthesis by WT1. This pathway is transcriptionally regulated by the sterol responsive element-binding proteins (SREBPs). Here, we provide evidence that the C-terminal end of the WT1 protein can directly interact with SREBP, suggesting that WT1 may modify the transcriptional function of SREBPs via a direct protein-protein interaction. Therefore, the tumour suppressor activities of WT1 may be achieved by repressing the mevalonate pathway, thereby controlling cellular proliferation and promoting terminal differentiation.
Resumo:
Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout ( Nas1(-/-)) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1(-/-) mice using oligonucleotide microarrays. The mRNA expression levels of 92 genes with known functional roles in metabolism, cell signaling, cell defense, immune response, cell structure, transcription, or protein synthesis were increased ( n = 51) or decreased ( n = 41) in Nas1(-/-) mice when compared with Nas1(-/-) mice. The most upregulated transcript levels in Nas1(-/-) mice were found for the sulfotransferase genes, Sult3a1 ( approximate to 500% increase) and Sult2a2 ( 100% increase), whereas the metallothionein-1 gene, Mt1, was among the most downregulated genes ( 70% decrease). Several genes involved in lipid and cholesterol metabolism, including Scd1, Acly, Gpam, Elov16, Acsl5, Mvd, Insig1, and Apoa4, were found to be upregulated ( >= 30% increase) in Nas1(+/+) mice. In addition, Nas1(+/+) mice exhibited increased levels of hepatic lipid ( approximate to 16% increase), serum cholesterol ( approximate to 20% increase), and low-density lipoprotein ( approximate to 100% increase) and reduced hepatic glycogen ( approximate to 50% decrease) levels. In conclusion, these data suggest an altered lipid and cholesterol metabolism in the hyposulfatemic Nas1(-/-) mouse and provide new insights into the metabolic state of the liver in Nas1(-/-) mice.
Resumo:
This study compared the molecular lipidomic profi le of LDL in patients with nondiabetic advanced renal disease and no evidence of CVD to that of age-matched controls, with the hypothesis that it would reveal proatherogenic lipid alterations. LDL was isolated from 10 normocholesterolemic patients with stage 4/5 renal disease and 10 controls, and lipids were analyzed by accurate mass LC/MS. Top-down lipidomics analysis and manual examination of the data identifi ed 352 lipid species, and automated comparative analysis demonstrated alterations in lipid profi le in disease. The total lipid and cholesterol content was unchanged, but levels of triacylglycerides and N -acyltaurines were signifi cantly increased, while phosphatidylcholines, plasmenyl ethanolamines, sulfatides, ceramides, and cholesterol sulfate were signifi cantly decreased in chronic kidney disease (CKD) patients. Chemometric analysis of individual lipid species showed very good discrimination of control and disease sample despite the small cohorts and identifi ed individual unsaturated phospholipids and triglycerides mainly responsible for the discrimination. These fi ndings illustrate the point that although the clinical biochemistry parameters may not appear abnormal, there may be important underlying lipidomic changes that contribute to disease pathology. The lipidomic profi le of CKD LDL offers potential for new biomarkers and novel insights into lipid metabolism and cardiovascular risk in this disease. -Reis, A., A. Rudnitskaya, P. Chariyavilaskul, N. Dhaun, V. Melville, J. Goddard, D. J. Webb, A. R. Pitt, and C. M. Spickett. Topdown lipidomics of low density lipoprotein reveal altered lipid profi les in advanced chronic kidney disease. J. Lipid Res. 2015.