755 resultados para LENS
Resumo:
Background and Aims: Submucosal injection of a viscoelastic solution prolongs submucosal lift, thus, facilitating endoscopic mucosal resection. Our objective was to assess the safety and clinical effectiveness of 0.4% hydroxypropyl methylcellulose (HPMC) as a submucosal injectant for endoscopic mucosal resection. Patients and Methods: A prospective, open-label, multicenter, phase 2 study was conducted at 2 academic institutions in Brazil. Eligible participants included patients with early gastrointestinal tumors larger than 10 mm. Outcomes evaluated included complete resection rates, volume of HPMC injected, duration of the submucosal cushion as assessed visually, histology of the resected leisons, and complication rates. Results: Over a 12-month period, 36 eligible patients with superficial neoplastic lesions (stomach 14, colon 11, rectum 5, esophagus 3, duodenum 3) were prospectively enrolled in the study. The mean size of the resected specimen was 20.4 mm (10 to 60 mm). The mean volume of 0.4% HPMC injected was 10.7 mL (range 4 to 35 mL). The mean duration of the submucosal fluid cushion was 27 minutes (range 9 to 70 min). Complete resection was successfully completed in 89%. Five patients (14%) developed immediate bleeding requiring endoclip and APC application. Esophageal perforation occurred in 1 patient requiring surgical intervention. There were no local or systemic adverse events related to HPMC use over the follow-up period (mean 2.2 mo). Conclusion: HPMC solution (0.4%) provides an effective submucosal fluid cushion and is safe for endoscopic resection of early gastrointestinal neoplastic lesions.
Resumo:
Introduction: The pterygopalatine fossa (PPF) is a narrow space located between the posterior wall of the antrum and the pterygoid plates. Surgical access to the PPF is difficult because of its protected position and its complex neurovascular anatomy. Endonasal approaches using rod lens endoscopes, however, provide better visualization of this area and are associated with less morbidity than external approaches. Our aim was to develop a simple anatomical model using cadaveric specimens injected with intravascular colored silicone to demonstrate the endoscopic anatomy of the PPF. This model could be used for surgical instruction of the transpterygoid approach. Methods: We dissected six PPF in three cadaveric specimens prepared with intravascular injection of colored material using two different injection techniques. An endoscopic endonasal approach, including a wide nasoantral window and removal of the posterior antrum wall, provided access to the PPF. Results: We produced our best anatomical model injecting colored silicone via the common carotid artery. We found that, using an endoscopic approach, a retrograde dissection of the sphenopalatine artery helped to identify the internal maxillary artery (IMA) and its branches. Neural structures were identified deeper to the vascular elements. Notable anatomical landmarks for the endoscopic surgeon are the vidian nerve and its canal that leads to the petrous portion of the internal carotid artery (ICA), and the foramen rotundum, and V2 that leads to Meckel`s cave in the middle cranial fossa. These two nerves, vidian and V2, are separated by a pyramidal shaped bone and its apex marks the ICA. Conclusion: Our anatomical model provides the means to learn the endoscopic anatomy of the PPF and may be used for the simulation of surgical techniques. An endoscopic endonasal approach provides adequate exposure to all anatomical structures within the PPF. These structures may be used as landmarks to identify and control deeper neurovascular structures. The significance is that an anatomical model facilitates learning the surgical anatomy and the acquisition of surgical skills. A dissection superficial to the vascular structures preserves the neural elements. These nerves and their bony foramina, such as the vidian nerve and V2, are critical anatomical landmarks to identify and control the ICA at the skull base.
Resumo:
Purpose: Contact lens electrodes (CLEs) are frequently used to register electroretinograms (ERGs) in small animals such as mice or rats. CLEs are expensive to buy or difficult to be produced individually. In addition, CLE`s have been noticed to elicit inconstant results and they carry potential to injure the cornea. Therefore, a new electrode holder was constructed based on the clinically used DTL-electrode and compared to CLEs. Material and methods: ERGs were recorded with both electrode types in nine healthy Brown-Norway rats under scotopic conditions. For low intensity responses a Naka-Rushton function was fitted and the parameters V(max), k and n were analyzed. The a-wave, b-wave and oscillatory potentials were analyzed for brighter flash intensities (1-60 scot cd s/m(2)). Repeatability was assessed for both electrode types in consecutive measurements. Results: The new electrode holder was faster in setting up than the CLE and showed lower standard deviations. No corneal alterations were observed. Slightly higher amplitudes were recorded in most of the measurements with the new electrode holder (except amplitudes induced by 60 cd s/m(2)). A Bland-Altman test showed good agreement between the DTL holder and the CLE (mean difference 35.2 mu V (Holder-CLE)). Pearson`s correlation coefficient for test-retest-reliability was r = 0.783. Conclusions: The DTL holder was superior in handling and caused far less corneal problems than the CLE and produced comparable or better electrophysiological results. The minimal production costs and the possibility of adapting the DTL holder to bigger eyes, such as for dogs or rabbits, offers with broader application prospects. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Objective To report the biometric values and ultrasonographic aspects of the normal eye of the Striped owl (Rhinoptynx clamator). Sample population Twenty-seven healthy, free-living, adult Striped owls from the Ecological Park of Tiete Veterinary Ambulatory (Sao Paulo, Brazil). Procedures Both eyes of all owls underwent B-mode ultrasonographic examination and biometry was performed for lens axial length (WL), depth of the anterior (AC) and vitreous (VC) chambers, axial length of the globe (LB) and the pecten oculi (LP) of both eyes, using a 12 MHz probe. The owls were manually restrained without sedation and the eyes were topically anesthetized. Results Biometric and statistical findings were as follows: in the left eye, the means and standard deviations were: LB = 23.76 +/- 0.92 mm, WL = 7.79 +/- 0.27 mm, AC = 4.27 +/- 0.47 mm, VC = 11.36 +/- 0.29 mm and LP = 5.69 +/- 0.50 mm; in the right eye, the values were: LB = 24.25 +/- 0.79 mm, WL = 8.03 +/- 0.40 mm, AC = 4.56 +/- 0.52 mm, VC = 11.40 +/- 0.25 mm, and LP = 5.68 +/- 0.41 mm. No significant differences were found between left and right eyes measurements of LB, WL, AC, VC, and LP dimensions. Conclusions Ocular ultrasound aspects and biometric values of the Striped owl are reported. The study`s results provide means for various ocular measurements. The ultrasound is an easy and safe exam to be performed in the Striped owl`s eyes.
Resumo:
In this study was evaluated the vascular system of uropigian gland in 34 fowls (Gallus gallus domesticus), of Cobb lineage. The material was donated by the firm Globo Aves, located in Uberlandia - MG. Was specially studied the origin of collaterals that are aimed to that gland. Animals had them arterial contingents injected with a colored solution of neoprene latex, by polyethylene canulas through the right isquiatic artery. Then was injected an aqueous solution of formol 10%, in subcutaneous and intracavity spaces, which made possible the material fixation. Finally was proceeded the individually dissection of circumscribed region of uropigian gland. Opportunely was used a monocular lens in observation of vascular profile and was prepared schematics models representing the irrigation of each fowl. Uropigian gland showed itself as irrigated by mediana caudal artery in all (100%) animals, through its intersegmentaries branches, which emit right and left lateral glandular branchs and, right and left medials. Was counted the sub-branches, and was verified bigger emission in the right by the M. D. 1,1 and 1,2; and in the left by the M. E. 1,1 and 1,2.
Resumo:
Guadalupian reefs occur locally in Guangxi, Guizhou, Yunnan and Western Zhejiang, South China. Two types of Guadalupian reefs can be recognized, one is developed in carbonate platforms, e.g. those in the juncture areas of Guangxi, Yunnan and Guizhou; the other occurs in a littoral clastic shelf. The Lengwu reef in Western Zhejiang is a representative of the latter type, which is a major topic of this paper. Lengwu algae-sponge reef, more than one hundred meters in thickness, are composed mainly of sponges, hydrozoans, algae, bryozoans, microbes and lime mud. Reef limestones sit on the mudstone interbedded with fine sandstone of the proximal prodelta facies and are overlain by coarse clasts of the delta front sediments. Lengwu reef displays a lens-shaped relief, dipping and thinning from the reef core, which is remarkably different from the surrounding sediments, showing a protruding relief. Sponges and microbe/algae form bafflestone, bindstone and framestone of the reef core facies. Fore-reef facies is characterized by lithoclastic rudstone and bioclastic packstone. Reef limestone sequence is composed of three cycles and controlled by sea level changes and sediment influx. Such reef is unique among the Guadalupian reefs in South China, but seems similar in some aspects to lwaizaki reef limestones of south Kitakami in Japan. Algae and microbes growing around sponges to form rigid structure in Lengwu reef are a typical feature, which is distinctly different to Guadalupian reefs in a stable platform facies of Guizhou, Yunnan and Guangxi, South China.
Resumo:
The spectral sensitivities of avian retinal photoreceptors are examined with respect to microspectrophotometric measurements of single cells, spectrophotometric measurements of extracted or in vitro regenerated visual pigments, and molecular genetic analyses of visual pigment opsin protein sequences. Bird species from diverse orders are compared in relation to their evolution, their habitats and the multiplicity of visual tasks they must perform. Birds have five different types of visual pigment and seven different types of photo receptor-rods, double (uneven twin) cones and four types of single cone. The spectral locations of the wavelengths of maximum absorbance (lambda (max)) of the different visual pigments, and the spectral transmittance characteristics of the intraocular spectral filters (cone oil droplets) that also determine photoreceptor spectral sensitivity, vary according to both habitat and phylogenetic relatedness. The primary influence on avian retinal design appears to be the range of wavelengths available for vision, regardless of whether that range is determined by the spectral distribution of the natural illumination or the spectral transmittance of the ocular media (cornea, aqueous humour, lens, vitreous humour). Nevertheless, other variations in spectral sensitivity exist that reflect the variability and complexity of avian visual ecology. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N, (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
When visual information is confined to one object plane, the emmetropization end-point is adjusted in accord with the corresponding incident optical vergence at the eye [Proceedings of the 7th International Conference on Myopia (2000) 113]. We now report the effect of adding extra visual information beyond the target plane. Visual conditions were controlled using a cone-lens system: black Maltese cross targets on white opaque backgrounds (OMX) were attached to the open faces of 2.5 cm translucent cones fitted with either 0, +25 or +40 D imaging lenses. An alternative target (TMX) was made by substituting the opaque target background for a transparent background, which allowed access to visual information beyond the target plane. The imaging devices were applied to 7-day-old chicks and worn for 4 days. Prior to this treatment, on day 2, some chicks underwent ciliary nerve section (CNS) to preclude accommodation. All treatments were monocular. Refractive errors and axial ocular dimensions were measured using retinoscopy and A-scan ultrasonography under halothane anesthesia. Treatment effects were specified as mean ( +/-S.D.) interocular differences. Eyes with the OMX/ + 40 D lens combination remained emmetropic ( +0.73 +/-3.57 D), consistent with the target plane being approximately conjugate with the retina. Switching to the TMX caused a hyperopic shift in refractive error ( + 3.78 +/- 3.41 D). This relative shift towards hyperopia in switching from the OMX to the TMX target also occurred for the other two lens powers. Thus, the OMX/ + 25 D lens induced myopia ( - 7.00 +/-5.88 D), corresponding to the imposed hyperopic defocus (target plane now imaged behind the retina), and switching to the TMX resulted in a reduction in myopia (-1.73 +/-5.36 D), The OMX/0 D lens combination produced the largest myopic shift, and here, switching to the TMX condition almost eliminated the myopic response (-15.50 +/-6.62 D cf. -0.56 +/-1.24 D). This relative hyperopic shift associated with switching from the OMX to the TMX target was eliminated by CNS surgery. Thus, the two CNS/TMX groups were both more myopic than the equivalent no CNS/TMX groups ( + 40 D lens: -2.66 +/-2.34 D; +25 D lens: -7.97 +/-6.87 D). When the visual information is restricted to one plane, incident optical vergence appears to direct emmetropization. Adding Visual information at other distances produces a shift in the end-point of ernmetropization in the direction of the added information. That these effects are dependent on the integrity of the accommodation system implies that accommodation plays a role in emmetropization and represents the first reported evidence of this kind. Published by Elsevier Science Ltd.
Resumo:
My purpose here is to put forward a conception of genre as a way to conduct Futures Studies. To demonstrate the method, I present some examples of contemporary political and corporate discourses and contextualise them in broader institutional and historical settings. I elaborate the method further by giving examples of ‘genre chaining’ and ‘genre hybridity’ (Fairclough 1992 2000) to show how past, present, and future change can be viewed through the lens of genre.
Resumo:
Mice transgenic for E6/E7 oncogenes of Human Papillomavirus type 16 display life-long expression of E6 in lens and skin epithelium, and develop inflammatory skin disease late in life, which progresses to papillomata and squamous carcinoma in some mice. We asked whether endogenous expression of E6 induced a specific immunological outcome, i.e. immunity or tolerance, or whether the mice remained immunologically naive to E6. We show that prior to the onset of skin disease, E6 transgenic mice did not develop a spontaneous E6-directed antibody response, nor did they display T-cell proliferative responses to dominant T-helper epitope peptides within E6. In contrast, old mice in which skin disease had arisen, developed antibodies to E6. We also show that following immunisation with E6, specific antibody responses did not differ significantly among groups of EB-transgenic mice of different ages (and therefore of different durations and amounts of exposure to endogenous E6), and non-transgenic controls. Additionally, E6 immunisation-induced T-cell proliferative responses were similar in E6-transgenic and non-transgenic mice. These data are consistent with the interpretation that unimmunised Eb-transgenic mice that have not developed inflammatory skin disease remain immunologically naive to E6 at the B- and Th levels. There are implications for E6-mediated tumorigenesis in humans, and for the development of putative E6 therapeutic vaccines. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ascochyta blight, caused by Ascochyta lentis , is one of the most globally important diseases of lentil. Breeding for host resistance has been suggested as an efficient means to control this disease. This paper summarizes existing studies of the characteristics and control of Ascochyta blight in lentil, genetics of resistance to Ascochyta blight and genetic variations among pathogen populations (isolates). Breeding methods for control of the disease are discussed. Six pathotypes of A. lentis have been reported. Many resistant cultivars/lines have been identified in both cultivated and wild lentil. Resistance to Ascochyta blight in lentil is mainly under the control of major genes, but minor genes also play a role. Current breeding programmes are based on crossing resistant and high-yielding cultivars and multilocation testing. Gene pyramiding, exploring slow blighting and partial resistance, and using genes present in wild relatives will be the methods used in the future. Identification of more sources of resistance genes, good characterization of the host-pathogen system, and identification of molecular markers tightly linked to resistance genes are suggested as the key areas for future study.
Resumo:
The visual biology of Hawaiian reef fishes was explored by examining their eyes for spectral sensitivity of their visual pigments and for transmission of light through the ocular media to the retina. The spectral absorption curves for the visual pigments of 38 species of Hawaiian fish were recorded using microspectrophotometry. The peak absorption wavelength (lambda(max)) of the rods varied from 477-502 nm and the lambda(max) of individual species conformed closely to values for the same species previously reported using a whole retina extraction procedure. The visual pigments of single cone photoreceptors were categorized, dependent on their lambda(max)-values, as ultraviolet (347-376 nm), violet (398-431 nm) or blue (439-498 nm) sensitive cones. Eight species possessed ultraviolet-sensitive cones and 14 species violet-sensitive cones. Thus, 47% of the species examined displayed photosensitivity to the short-wavelength region of the spectrum. Both identical and nonidentical paired and double cones were found with blue sensitivity or green absorption peaks (> 500 nm). Spectrophotometry of the lens, cornea, and humors for 195 species from 49 families found that the spectral composition of the light transmitted to the retina was most often limited by the lens (73% of species examined). Except for two unusual species with humor-limited eyes, Acanthocybium solandri (Scombridae) and the priacanthid fish, Heteropriacanthus cruentatus, the remainder had corneal-limited eyes. The wavelength at which 50% of the light was blocked (T50) was classified according to a system modified from Douglas and McGuigan (1989) as Type I, T50 < = 355 nm, (32 species); Type IIa, 355 < T50 < = 380 nm (30 species); Type IIb, 380 < T50 405 nm (84 species). Possession of UV-transmitting ocular media follows both taxonomic and functional lines and, if the ecology of the species is considered, is correlated with the short-wavelength visual pigments found in the species. Three types of short-wavelength vision in fishes are hypothesized: UV-sensitive, UV-specialized, and violet-specialized. UV-sensitive eyes lack UV blockers (Type I and IIa) and can sense UV light with the secondary absorption peak or beta peak of their longer wavelength visual pigments but do not possess specialized UV receptor cells and, therefore, probably lack UV hue discrimination. UV-specialized eyes allow transmission of UV light to the retina (Type I and IIa) and also possess UV-sensitive cone receptors with peak absorption between 300 and 400 nm. Given the appropriate perceptual mechanisms, these species could possess true UV-color vision and hue discrimination. Violet-specialized eyes extend into Type IIb eyes and possess violet-sensitive cone cells. UV-sensitive eyes are found throughout the fishes from at least two species of sharks to modern bony fishes. Eyes with specialized short-wavelength sensitivity are common in tropical reef fishes and must be taken into consideration when performing research involving the visual perception systems of these fishes. Because most glass and plastics are UV-opaque, great care must be taken to ensure that aquarium dividers, specimen holding containers, etc., are UV-transparent or at least to report the types of materials in use.
Resumo:
The radial undistortion model proposed by Fitzgibbon and the radial fundamental matrix were early steps to extend classical epipolar geometry to distorted cameras. Later minimal solvers have been proposed to find relative pose and radial distortion, given point correspondences between images. However, a big drawback of all these approaches is that they require the distortion center to be exactly known. In this paper we show how the distortion center can be absorbed into a new radial fundamental matrix. This new formulation is much more practical in reality as it allows also digital zoom, cropped images and camera-lens systems where the distortion center does not exactly coincide with the image center. In particular we start from the setting where only one of the two images contains radial distortion, analyze the structure of the particular radial fundamental matrix and show that the technique also generalizes to other linear multi-view relationships like trifocal tensor and homography. For the new radial fundamental matrix we propose different estimation algorithms from 9,10 and 11 points. We show how to extract the epipoles and prove the practical applicability on several epipolar geometry image pairs with strong distortion that - to the best of our knowledge - no other existing algorithm can handle properly.
Resumo:
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.