978 resultados para Kinetic undercooling
Resumo:
The growth, maintenance and lysis processes of Nitrobacter were characterised. A Nitrobacter culture was enriched in a sequencing batch reactor (SBR). Fluorescent in situ hybridisation showed that Nitrobacter constituted 73% of the bacterial population. Batch tests were carried out to measure the oxygen uptake rate and/or nitrite consumption rate when both nitrite and CO2 were in excess, and in the absence of either of these two substrates. The results obtained, along with the SBR performance data, allowed the determination of the maintenance coefficient and in situ cell lysis rate of Nitrobacter. Nitrobacter spends a significant amount of energy for maintenance, which varies considerably with the specific growth rate. At maximum growth, Nitrobacter consume nitrite at a rate of 0.042 mgN/mgCOD(biomass)center dot h for maintenance purposes, which increases more than threefold to 0.143 mgN/mgCOD(biomass)center dot h in the absence of growth. In the SBR, where Nitrobacter grew at 40% of its maximum growth rate, a maintenance coefficient of 0.113 mgN/mgCOD center dot h was found, resulting in 42% of the total amount of nitrite being consumed for maintenance. The above three maintenance coefficient values obtained at different growth rates appear to support the maintenance model proposed in Pirt (1982). The in situ lysis rate of Nitrobacter was determined to be 0.07/day under aerobic conditions at 22 C and pH 7.3. Further, the maximum specific growth rate of Nitrobacter was estimated to be 0.02/h (0.48/day). The affinity constant of Nitrobacter with respect to nitrite was determined to be 1.50 mgNO(2)(-)-N/L, independent of the presence or absence of CO2. (c) 2006 Wiley Periodicals, Inc.
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
West Nile Virus is becoming a widespread pathogen, infecting people on at least four continents with no effective treatment for these infections or many of their associated pathologies. A key enzyme that is essential for viral replication is the viral protease NS2B-NS3, which is highly conserved among all flaviviruses. Using a combination of molecular fitting of substrates to the active site of the crystal structure of NS3,site-directed enzyme and cofactor mutagenesis, and kinetic studies on proteolytic processing of panels of short peptide substrates, we have identified important enzyme-substrate interactions that define substrate specificity for NS3 protease. In addition to better understanding the involvement of S2, S3, and S4 enzyme residues in substrate binding, a residue within cofactor NS2B has been found to strongly influence the preference of flavivirus proteases for lysine or arginine at P2 in substrates. Optimization of tetrapeptide substrates for enhanced protease affinity and processing efficiency has also provided important clues for developing inhibitors of West Nile Virus infection.
Resumo:
A new integration scheme is developed for nonequilibrium molecular dynamics simulations where the temperature is constrained by a Gaussian thermostat. The utility of the scheme is demonstrated by its application to the SLLOD algorithm which is the standard nonequilibrium molecular dynamics algorithm for studying shear flow. Unlike conventional integrators, the new integrators are constructed using operator-splitting techniques to ensure stability and that little or no drift in the kinetic energy occurs. Moreover, they require minimum computer memory and are straightforward to program. Numerical experiments show that the efficiency and stability of the new integrators compare favorably with conventional integrators such as the Runge-Kutta and Gear predictor-corrector methods. (C) 1999 American Institute of Physics. [S0021-9606(99)50125-6].
Resumo:
Most published work on either low- or high-rate biological filters covers one of three topics: kinetics, microbiology/ecology or hydraulics. These areas have been re-examined together for high-rate filters in order to further integrate them and enable appropriate utilization of low-rate filter experience.
Resumo:
The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.
Resumo:
The purpose of this work is to gain knowledge on kinetics of biomass decomposition under oxidative atmospheres, mainly examining effect of heating rate on different biomass species. Two sets of experiments are carried out: the first set of experiments is thermal decomposition of four different wood particles, namely aspens, birch, oak and pine under an oxidative atmosphere and analysis with TGA; and the second set is to use large size samples of wood under different heat fluxes in a purpose-built furnace, where the temperature distribution, mass loss and ignition characteristics are recorded and analyzed by a data post-processing system. The experimental data is then used to develop a two-step reactions kinetic scheme with low and high temperature regions while the activation energy for the reactions of the species under different heating rates is calculated. It is found that the activation energy of the second stage reaction for the species with similar constituent fractions tends to converge to a similar value under the high heating rate.
Resumo:
The kinetics of the metathesis of 1-hexene using Re2O7/-Al_2O_3 as the catalyst were investigated under a variety of conditions. The experiments were carried out under high vacuum conditions. The product solutions were characterised by gas liquid chromatography and mass spectroscopy. The initial kinetics of the metathesis of 1-hexene showed that the reaction was first order in the weight of the catalyst and second order in the concentration of 1-hexene. A kinetic scheme which correlated the experimental data with the metallocarbene chain mechanism postulated by Herisson and Chauvin and the kinetics of the reaction was explained using a model based on the Langmuir-Hinshelwood theory. The low conversion of 1-hexene to its products is due to termination reactions which most likely occur by the decomposition of the metallocyclobutane intermediate to produce a cyclopropane derivative and an inactive centre. The optimum temperature for the metathesis of 1-hexene over Re_2O_7/-Al2O3 is 45oC and above this temperature, the rate of metathesis decreases rapidly. Co-catalysts alter the active sites for metathesis so that the catalyst is more selective to the metathesis of 1-hexene. However, the regeneration of metathesis activity is much worse for promoted catalysts than for the unpromoted. The synthesis and metathesis of 4,4-dimethyl-2-allowbreak (9-decenyl)-1,3-oxazoline and 4,4-dimethyl-2-allowbreak (3-pentenyl)-1,3-oxazoline was attempted and the products were analysed by thin layer chromatography, infra-red, 13C and 1H nmr and mass spectroscopy. Obtaining the oxazolines in a good yield with high purity was difficult and consequently metathesis of the impure products did not occur.