960 resultados para Iron particles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Excerpt] Under anaerobic conditions long chain fatty acids (LCFA) can be converted to methane by syntrophic bacteria and methanogenic archaea. LCFA degradation was also reported in the presence of alternative hydrogenotrophic partners, such as sulfate-reducing bacteria (SRB) and iron-reducing bacteria (IRB), which generally show higher affinity for H2 than methanogens and are more resistant to LCFA [1,2,3]. Their presence in a microbial culture degrading LCFA can be advantageous to reduce LCFA toxicity towards methanogens, although high concentrations of external electron acceptor (EEA) can lead to outcompetition of methanogens and cease methane production. In this work, we tested the effect of adding sub-stoichiometric concentrations of sulfate and iron(III) to methanogenic communities degrading LCFA. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Bioengenharia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual. Water-soluble organic molecules such as certain non-biodegradable herbicides, industrial dyes and metabolites of widespread use drugs are a major source of pollution in groundwater from agricultural areas and in industrial and domestic effluents. Photo-catalytic reactions by UV-visible irradiation and organic sensitizers are one of the most economical and convenient methods for the decomposition of pollutants into harmless byproducts. In many applications it is highly desirable a high degree of specificity, effectiveness and speed of degradation of specific pollutants present in a complex mixture. In particular nano/micro-particles systems that form stable aqueous suspensions are highly desirable because they allow for easy application and effective decontamination of large volumes of fluids. Herein we propose the development of nano/micro particles composed by molecularly imprinted polymers (MIP) and photo-sensitizers (PS). The specific binding of MIP and the photo-catalytic ability of the sensitizers are used to achieve the photo-decomposition of specific "template" molecules in complex mixtures. Mini-emulsion polymerization techniques will be used to synthesize nano/micro MIP-FS systems. Spectroscopy (steady-state and time resolved) and chromatography (GC and HPLC) will be used to characterize efficiency, mechanisms and specificity of photo-degradation in these systems. In addition single molecule/particle fluorescence spectroscopy techniques will be used to directly measure distributions of binding affinities and photo-degradation efficiency in individual particles. The proposed studies point to a more detailed understanding of the factors affecting the photo-degradation efficiency in nano/micro-particles and to apply that knowledge in the design of optimized systems for photo-selective destruction of socially relevant aqueous pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving grate, LEPOL, Particle, Limestone, Decomposition, Clinker, Fluidisation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Definite hyperplasia of cells occurs in the skin lesions of the infectious myxoma of rabbits, more visible in such stages in which the intercellular basophilic substance is rather scanty (fig. 2). The increase in number of cells is the result of simplified forms of mitosis (modified type of mitosis, pseudoamitosis) which might readily be mistaken for amitosis in their final stages. Budding (figs. 20, 28, 29, 30) as well as constriction of the nucleus (figs. 18, 31, 32), and the formation of giant-cells (figs. 33, 34) are not rare. During the entire process the nuclear membrane does not desintegrate as in typical mitosis. Division of the cytoplasm following division of the nucleus has been demonstrated (fig. 17). Typical mitosis is practically absent. The cells which undergo hyperplasia present remarkable changes in their dimension, shape, and structure. The nucleus and cell-body are considerably enlarged (figs. 6, 7, 8). The shape of the nucleus is modified (figs. 8, 10, 15). Hypertrophy of nuclein, either as an intranuclear network (spireme?, figs. 9, 23), or in the form conspicuous, deeply staining masses which appear not to be homogeneous but to be composed of small particles closely clumped ("mulberries"?, figs. 12, 13, 14, 25, 26) occurs in most cells. While some of these pictures are probably related to necrosis of the cells as started by most of the previous workers, it is lekely that some of them may represent developmental stages of the modified mitosis (pseudoamitosis) here reported. In fact, fine cytological details not ordinarily preserved in necrotic cells (figs. 35, 36, 37) may be demonstrated in the socalled myxoma-cells subtted to approved cytological methods of study (fixation in B-15 and P. F. A.-3, staining in iron-hematoxylin).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To specifically induce a mucosal antibody response to purified human papillomavirus type 16 (HPV16) virus-like particles (VLP), we immunized female BALB/c mice orally, intranasally, and/or parenterally and evaluated cholera toxin (CT) as a mucosal adjuvant. Anti-HPV16 VLP immunoglobulin G (IgG) and IgA titers in serum, saliva, and genital secretions were measured by enzyme-linked immunosorbent assay (ELISA). Systemic immunizations alone induced HPV16 VLP-specific IgG in serum and, to a lesser extent, in genital secretions but no secretory IgA. Oral immunization, even in the presence of CT, was inefficient. However, three nasal immunizations with 5 microgram of VLP given at weekly intervals to anesthetized mice induced high (>10(4)) and long-lasting (>15 weeks) titers of anti-HPV16 VLP antibodies in all samples, including IgA and IgG in saliva and genital secretions. CT enhanced the VLP-specific antibody response 10-fold in serum and to a lesser extent in saliva and genital secretions. Nasal immunization of conscious mice compared to anesthetized mice was inefficient and correlated with the absence of uptake of a marker into the lung. However, a 1-microgram VLP systemic priming followed by two 5-microgram VLP intranasal boosts in conscious mice induced both HPV16 VLP-specific IgG and IgA in secretions, although the titers were lower than in anesthetized mice given three intranasal immunizations. Antibodies in serum, saliva, and genital secretions of immunized mice were strongly neutralizing in vitro (50% neutralization with ELISA titers of 65 to 125). The mucosal and systemic/mucosal HPV16 VLP immunization protocols that induced significant titers of neutralizing IgG and secretory IgA in mucosal secretions in mice may be relevant to genital HPV VLP-based human vaccine trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction : The redox properties of fine/ultrafine particles as well as nanoparticles (NP) are suggested to be important to explain their biological activity and could constitute a novel and promising metric for hazard evaluation. The acellular in vitro dithiothreitol (DTT) assay allows measuring this property. Objectives : (1) to evaluate sampling requirements for fine/ultrafine particle allowing measurement of their oxidative potential (2) to apply the methodology to occupational situations where particle from combustion sources are generated. Material and method : Sampling parameters (type of filters and loaded amount) and storage duration affecting the DTT measurements were evaluated. Based on these results, a methodological approach was defined and applied in two occupational situations where diesel and other combustion particles are present (toll station in a tunnel and mechanical yard for bus reparation). Results : Teflon filters loaded with diesel particles were found more suitable for the DTT assay, due to their better chemical inertness compared to quartz filters: after storage durations larger than 150 hours, an increased reactivity toward DTT was observed only with quartz filters. Reactivity was linearly correlated to the loaded mass until about 1000 μg/filter. Different redox reactivities were determined in both working places, with the mechanical yard presenting a higher DTT consumption rate. Discussion and conclusions : These results demonstrate the feasibility of this method to determine the oxidative potential of fine/ultrafine particles in occupational situations. We propose to include this approach for hazard assessment of work places with exposure to manufactured and other NP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Iron deficiency is a common and undertreated problem in inflammatory bowel disease (IBD). AIM: To develop an online tool to support treatment choice at the patient-specific level. METHODS: Using the RAND/UCLA Appropriateness Method (RUAM), a European expert panel assessed the appropriateness of treatment regimens for a variety of clinical scenarios in patients with non-anaemic iron deficiency (NAID) and iron deficiency anaemia (IDA). Treatment options included adjustment of IBD medication only, oral iron supplementation, high-/low-dose intravenous (IV) regimens, IV iron plus erythropoietin-stimulating agent (ESA), and blood transfusion. The panel process consisted of two individual rating rounds (1148 treatment indications; 9-point scale) and three plenary discussion meetings. RESULTS: The panel reached agreement on 71% of treatment indications. 'No treatment' was never considered appropriate, and repeat treatment after previous failure was generally discouraged. For 98% of scenarios, at least one treatment was appropriate. Adjustment of IBD medication was deemed appropriate in all patients with active disease. Use of oral iron was mainly considered an option in NAID and mildly anaemic patients without disease activity. IV regimens were often judged appropriate, with high-dose IV iron being the preferred option in 77% of IDA scenarios. Blood transfusion and IV+ESA were indicated in exceptional cases only. CONCLUSIONS: The RUAM revealed high agreement amongst experts on the management of iron deficiency in patients with IBD. High-dose IV iron was more often considered appropriate than other options. To facilitate dissemination of the recommendations, panel outcomes were embedded in an online tool, accessible via http://ferroscope.com/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria often possess multiple siderophore-based iron uptake systems for scavenging this vital resource from their environment. However, some siderophores seem redundant, because they have limited iron-binding efficiency and are seldom expressed under iron limitation. Here, we investigate the conundrum of why selection does not eliminate this apparent redundancy. We focus on Pseudomonas aeruginosa, a bacterium that can produce two siderophores-the highly efficient but metabolically expensive pyoverdine, and the inefficient but metabolically cheap pyochelin. We found that the bacteria possess molecular mechanisms to phenotypically switch from mainly producing pyoverdine under severe iron limitation to mainly producing pyochelin when iron is only moderately limited. We further show that strains exclusively producing pyochelin grew significantly better than strains exclusively producing pyoverdine under moderate iron limitation, whereas the inverse was seen under severe iron limitation. This suggests that pyochelin is not redundant, but that switching between siderophore strategies might be beneficial to trade off efficiencies versus costs of siderophores. Indeed, simulations parameterized from our data confirmed that strains retaining the capacity to switch between siderophores significantly outcompeted strains defective for one or the other siderophore under fluctuating iron availabilities. Finally, we discuss how siderophore switching can be viewed as a form of collective decision-making, whereby a coordinated shift in behaviour at the group level emerges as a result of positive and negative feedback loops operating among individuals at the local scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vitamin B12 and iron deficiencies are common problems in consultations of general internal medicine. They cause different symptoms that can be non-specific. This article makes it possible, from a clinical frame of reference, to answer the following questions: What value of vitamin B12 should we consider a "deficiency", and what is the role of methylmalonate? What is the role of vitamin B12 oral supplements? How should we interpret values of ferritine? How should iron deficiency be investigated? What is the place of intravenous iron administration?