875 resultados para Intracellular Cholesterol
Resumo:
The purpose of this study was to evaluate the effects of simvastatin on guided bone regeneration in the mandibles of ovariectomized rats, and to observe their blood cholesterol levels. Seventy female rats were divided into two groups: control and treated, both groups containing normal and ovariectomized rats. A month after ovariectomy a bone defect was created in the mandible, and was covered by a polytetrafluoroethylene membrane. The treated groups received simvastatin orally for 15 or 30 days. The rats were sacrificed 15, 30 or 60 days after surgery, at which time a blood sample was extracted for blood cholesterol level analysis and the mandible was extracted for densitometric, histological and morphometric analysis. All specimens underwent analysis of variance. The ovariectomized animals had higher cholesterol levels than the treated normal animals, and no significant difference was found between the different treatment periods and the sacrifice times. The densitometric, histological and morphometric analysis showed that the treated ovariectomized animals developed more new bone than the control ovariectomized rats, but no significant difference was observed between the treatment periods. It can be concluded that the deficiency of estrogen increased the level of blood cholesterol and that the simvastatin aided new bone formation in the ovariectomized animals.
Resumo:
Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.
Resumo:
Whether the consumption of egg yolk, which has a very high cholesterol content without excess saturated fats, has deleterious effects on lipid metabolism is controversial. Absorbed dietary cholesterol enters the bloodstream as chylomicrons, but the effects of regular consumption of large amounts of cholesterol on the metabolism of this lipoprotein have not been explored even though the accumulation of chylomicron remnants is associated with coronary artery disease (CAD). We investigated the effects of high dietary cholesterol on chylomicron metabolism in normolipidemic, healthy young men. The plasma kinetics of a chylomicron-like emulsion, doubly-labeled with 14C-cholesteryl ester ( 14C-CE) and 3H-triolein ( 3H-TG) were assessed in 25 men (17-22 y old, BMI 24.1 ± 3.4 kg/m 2). One group (n = 13) consumed 174 ± 41 mg cholesterol/d and no egg yolk. The other group (n = 12) consumed 3 whole eggs/d for a total cholesterol intake of 804 ± 40 mg/d. The nutritional composition of diets was the same for both groups, including total lipids and saturated fat, which comprised 25 and 7%, respectively, of energy intake. Serum LDL and HDL cholesterol and apoprotein B concentrations were higher in the group consuming the high-cholesterol diet (P < 0.05), but serum triacylglycerol, apo AI, and lipoprotein (a) did not differ between the 2 groups. The fractional clearance rate (FCR) of the 14C-CE emulsion, obtained by compartmental analysis, was 52% slower in the high-cholesterol than in the low-cholesterol group (P < 0.001); the 3H-TG FCR did not differ between the groups. Finally, we concluded that high cholesterol intakes increase the residence time of chylomicron remnants, as indicated by the 14C-CE kinetics, which may have undesirable effects related to the development of CAD. © 2006 American Society for Nutrition.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis (Pb 18) to survive into monocytes are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens, including P. brasiliensis, whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Chloroquine, by virtue of its basic properties, has been shown to prevent release of iron from holotransferrin by raising endocytic and lysosomal pH, and thereby interfering with normal iron metabolism. Then, in view of this, we have studied the effects of CHLOR on P. brasiliensis multiplication in human monocytes and its effect on the murine paracoccidioidomycosis. CHLOR induced human monocytes to kill P. brasiliensis. The effect of CHLOR was reversed by FeNTA, an iron compound that is soluble at neutral to alkaline pH, but not by holotransferrin, which releases iron only in an acidic environment. CHLOR treatment of Pb 18-infected BALB/c mice significantly reduced the viable fungi recovery from lungs, during three different periods of evaluation, in a dose-dependent manner. This study demonstrates that iron is of critical importance to the survival of P. brasiliensis yeasts within human monocytes and the CHLOR treatment in vitro induces Pb 18 yeast-killing by monocytes by restricting the availability of intracellular iron. Besides, the CHLOR treatment in vivo significantly reduces the number of organisms in the lungs of Pb-infected mice protecting them from several infections. Thus, CHLOR was effective in the treatment of murine paracoccidioidomycosis, suggesting the potential use of this drug in patients' treatment.
Resumo:
The purpose of this study was to evaluate the effects of simvastatin, by oral or subcutaneous administration, on tibial defects regeneration and blood cholesterol level in rats. A surgical defect was made on the right tibia of 40 male animals assigned to 4 groups (n=10), based on two routes of administration and on the use or not of simvastatin: subcutaneous injection of simvastatin (7 mg/kg) (group AT) or only the vehicle of drug suspension (group AC), above the defect area, for 5 days; and 20 mg/kg of simvastatin macerated on water (group BT) or only water (group BC), orally, daily, during the whole observation period. The animals were sacrificed after 15 or 30 days, when blood samples were analyzed to check plasma cholesterol levels. Tibiae were removed and, after decalcification and routine laboratorial processing, histological and histomorphometrical analyses were carried out. ANOVA was used for statistical analysis at 5% signficance level. The histological and histomorphometrical analyses showed significant differences only between the experimental periods (p<0.05). Animals sacrificed after 30 days showed better bone repair (p<0.05). There was no statistically significant difference (p>0.05) for blood cholesterol levels between the groups. In conclusion, simvastatin administration either orally or subcutaneously did not improve bone repair of experimental tibial defects and did not alter blood cholesterol levels in rats.
Resumo:
The level of high-density lipoprotein is thought to be critical in inhibiting lesion formation as well as reducing the lipid load of preexisting atherosclerotic lesions. With the aim of determining the main determinants of plasma HDL-cholesterol (HDL-c) in free-living adults, 997 individuals (52.3 10 years, 67 females) were selected for a descriptive cross-sectional study. The used data corresponded to the baseline obtained from participants clinically selected for a lifestyle modification program. Covariables of clinical, anthropometry, food intake, aerobic fitness, and plasma biochemistry were analyzed against plasma HDL-c either as continuous or categorized variables. After adjustments for age, gender, and BMI the excess of abdominal fat along with high carbohydrate-energy intake and altered plasma triglycerides were the stronger predictors of reduced plasma HDL-c. In conclusion lifestyle interventions aiming to normalize abdominal fatness and plasma triglycerides are recommended to restore normal levels of HDL-c in these free-living adults. Copyright © 2011 Erick Prado de Oliveira et al.
Resumo:
The present study had the objective of evaluating calcium accumulations in muscle fibers and their correlation with the canine muscular dystrophy. After the deaths of the animals (13 dystrophic and 3 non-dystrophic), samples of the skeletal muscles were collected. The material was stained with hematoxylin-eosin, Gomori's modified trichrome and alizarin red S technique (pH 4.3). The histopathological changes were analyzed and the proportions of calcium-positive (CPF) and negative muscle fibers were evaluated. Histopathological changes such as muscle fiber diameter changes, necrosis, hyalinization, presence of inflammatory infiltrate and fatty atrophy were identified in all the dystrophic muscles. Statistically significant differences in numbers of CPF between dystrophic muscles and non-dystrophics were observed for the masseter (6%), brachial biceps (5%) and triceps, sartorius and femoral biceps (4%) muscles. The identifying calcium is of interest as a parameter for helping in diagnostic screening.
Resumo:
Purpose: The purpose of this paper is to determine the effects of isolated soy glycinin (11S) on lipid metabolism in animals subjected to a hypercholesterolemic diet. Design/methodology/approach: Male Wistar rats were kept in individual cages under appropriate conditions. The animals were divided into three groups (n=9): normal diet (STD) given a diet containing casein as protein source, recommended in AIN-93M; hypercholesterolemic (HC) fed a normal diet with 1 per cent cholesterol and 0.5 per cent cholic acid; and hypercholesterolemic+glycinin (HC+11S), fed a hypercholesterolemic diet, plus 11S soy protein (300 mg/kg/day), dissolved in saline and administered by gavage. After 28 days, the animals were sacrificed and blood and liver removed for biochemical analysis of total cholesterol (TC), HDL-cholesterol (HDL-C) and triglycerides (TG) in the plasma, hepatic TC and TG. Findings: A single daily dose of glycinin given to the hypercholesterolemic group demonstrated its functional role, particularly in raising HDL-C and reducing triglycerides in the liver. Originality/value: This study demonstrates the action of the 11S globulin in soybean as a serum lipid lowering agent, in addition to its nutritional properties, especially in raising the HDL-C. © Emerald Group Publishing Limited.
Resumo:
Sophisticated molecular architectures can be produced with the layer-by-layer (LbL) method, which may combine distinct materials on the same film. In this study, we take advantage of this capability to produce cholesterol amperometric biosensors from LbL films containing hemoglobin (Hb) and cholesterol oxidase in addition to the polyelectrolytes poly(allylamine hydrochloride) (PAH) and poly(ethylene imine) (PEI). Following an optimization procedure, we found that an LbL film deposited onto ITO substrates, with the architecture ITO(PEI/Hb)5(PEI/COx)10, yielded a sensitivity of 93.4 μA μmol L-1 cm-2 for cholesterol incorporated into phospholipid liposomes, comparable to state-of-the-art biosensors. Hb acted as efficient electron mediator and did not suffer interference from phospholipids. Significantly, cholesterol could also be detected in real samples from chicken egg yolk, with no effects from potential interferents, including phospholipids. Taken together these results demonstrate the possible fabrication of low cost, easy-to-use cholesterol amperometric biosensors, whose sensitivity can be enhanced by further optimizing the molecular architectures of the LbL films. © 2012 Elsevier B.V.
Resumo:
Background: The current treatments for anxiety disorders and depression have multiple adverse effects in addition to a delayed onset of action, which has prompted efforts to find new substances with potential activity in these disorders. Citrus aurantium was chosen based on ethnopharmacological data because traditional medicine refers to the Citrus genus as useful in diminishing the symptoms of anxiety or insomnia, and C. aurantium has more recently been proposed as an adjuvant for antidepressants. In the present work, we investigated the biological activity underlying the anxiolytic and antidepressant effects of C. aurantium essential oil (EO), the putative mechanism of the anxiolytic-like effect, and the neurochemical changes in specific brain structures of mice after acute treatment. We also monitored the mice for possible signs of toxicity after a 14-day treatment.Methods: The anxiolytic-like activity of the EO was investigated in a light/dark box, and the antidepressant activity was investigated in a forced swim test. Flumazenil, a competitive antagonist of benzodiazepine binding, and the selective 5-HT1A receptor antagonist WAY100635 were used in the experimental procedures to determine the mechanism of action of the EO. To exclude false positive results due to motor impairment, the mice were submitted to the rotarod test.Results: The data suggest that the anxiolytic-like activity observed in the light/dark box procedure after acute (5 mg/kg) or 14-day repeated (1 mg/kg/day) dosing was mediated by the serotonergic system (5-HT1A receptors). Acute treatment with the EO showed no activity in the forced swim test, which is sensitive to antidepressants. A neurochemical evaluation showed no alterations in neurotransmitter levels in the cortex, the striatum, the pons, and the hypothalamus. Furthermore, no locomotor impairment or signs of toxicity or biochemical changes, except a reduction in cholesterol levels, were observed after treatment with the EO.Conclusion: This work contributes to a better understanding of the biological activity of C. aurantium EO by characterizing the mechanism of action underlying its anxiolytic-like activity. © 2013 Costa et al; licensee BioMed Central Ltd.
Resumo:
Abstract. Background: This study investigated the hypothesis that long-term orange juice consumption (≥ 12 months) was associated with low risk factors for cardiovascular disease in adult men and women with normal and moderately high cholesterol blood levels. Methods. The sample consisted of 103 men (18-66 y) and 26 women (18-65 y); all were employees of an orange juice factory with daily access to free orange juice. The results showed that 41% of the individuals consumed 2 cups (480 mL) of orange juice per day for at least twelve months, while 59% of the volunteers are non-consumers of orange juice. Results: Orange juice consumers with normal serum lipid levels had significantly lower total cholesterol (-11%, p <0.001), LDL-cholesterol (-18%, p < 0.001), apolipoprotein B (apo B) (-12%, p < 0.01) and LDL/HDL ratio (-12%, p < 0.04) in comparison to non-consumers, as did the consumers with moderate hypercholesterolemia: lower total cholesterol (-5%, p <0.02), LDL-cholesterol (-12%, p <0.03), apolipoprotein B (-12%, p <0.01) and LDL/HDL ratio (-16%, p <0.05) in comparison the non-consumers counterparts. Serum levels of homocysteine, HDL- cholesterol and apolipoprotein A-1, body composition and the dietary intake of food energy and macronutrients did not differ among orange juice consumers and non-consumers, but vitamin C and folate intake was higher in orange juice consumers. Conclusion: Long-term orange juice consumers had lower levels of total cholesterol, LDL-cholesterol, apo B and LDL/HDL ratio and an improvement of folate and vitamin C in their diet. © 2013 Aptekmann and Cesar; licensee BioMed Central Ltd.
Resumo:
Introduction Visceral leishmaniasis (VL) is caused by the intracellular protozoan Leishmania donovani complex. VL may be asymptomatic or progressive and is characterized by fever, anemia, weight loss and the enlargement of the spleen and liver. The nutritional status of the patients with VL is a major determinant of the progression, severity and mortality of the disease, as it affects the clinical progression of the disease. Changes in lipoproteins and plasma proteins may have major impacts in the host during infection. Thus, our goal was evaluate the serum total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, glucose, albumin, globulin and total protein levels, as well as the body composition, of VL patients before and after treatment. Methods Nutritional evaluation was performed using the bioelectrical impedance analysis (BIA) to assess body composition. Biochemical data on the serum total cholesterol, HDL, LDL, triglycerides, glucose, albumin, globulin and total protein were collected from the medical charts of the patients. Results BIA indicated that both pre-treatment and post-treatment patients exhibited decreased phase angles compared to the controls, which is indicative of disease. Prior to treatment, the patients exhibited lower levels of total body water compared to the controls. Regarding the biochemical evaluation, patients with active VL exhibited lower levels of total cholesterol, HDL, LDL and albumin and higher triglyceride levels compared to patients after treatment and the controls. Treatment increased the levels of albumin and lipoproteins and decreased the triglyceride levels. Conclusions Our results suggest that patients with active VL present biochemical and nutritional changes that are reversed by treatment.