965 resultados para Interleukin-8A


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dose-limiting toxicity of interleukin-2 (IL-2) and immunotoxin (IT) therapy in humans is vascular leak syndrome (VLS). VLS has a complex etiology involving damage to vascular endothelial cells (ECs), extravasation of fluids and proteins, interstitial edema, and organ failure. IL-2 and ITs prepared with the catalytic A chain of the plant toxin, ricin (RTA), and other toxins, damage human ECs in vitro and in vivo. Damage to ECs may initiate VLS; if this damage could be avoided without losing the efficacy of ITs or IL-2, larger doses could be administered. In this paper, we provide evidence that a three amino acid sequence motif, (x)D(y), in toxins and IL-2 damages ECs. Thus, when peptides from RTA or IL-2 containing this sequence motif are coupled to mouse IgG, they bind to and damage ECs both in vitro and, in the case of RTA, in vivo. In contrast, the same peptides with a deleted or mutated sequence do not. Furthermore, the peptide from RTA attached to mouse IgG can block the binding of intact RTA to ECs in vitro and vice versa. In addition, RTA, a fragment of Pseudomonas exotoxin A (PE38-lys), and fibronectin also block the binding of the mouse IgG-RTA peptide to ECs, suggesting that an (x)D(y) motif is exposed on all three molecules. Our results suggest that deletions or mutations in this sequence or the use of nondamaging blocking peptides may increase the therapeutic index of both IL-2, as well as ITs prepared with a variety of plant or bacterial toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of interleukin 2 (IL-2) as an antineoplastic agent has been limited by the serious toxicities that accompany the doses necessary for a tumor response. Elevation of nitric oxide (NO) and tumor necrosis factor (TNF) both have been implicated in IL-2 toxicities. CNI-1493, a tetravalent guanylhydrazone, is an inhibitor of macrophage activation including the synthesis of TNF and other cytokines. Doses of CNI-1493 as low as 1 mg/kg/day conferred complete protection against fatal toxicity of IL-2 with IL-2 doses tenfold higher than the safely tolerated level in Sprague–Dawley rats. Moreover, typical pathologic changes in the lungs, kidneys, and the liver caused by IL-2 infusion were blocked by cotreatment with CNI-1493. When animals bearing established hepatomas were given IL-2 and CNI-1493 combination therapy, 10 of 10 hepatomas regressed from 1 cm3 to <1 mm3. Intracytoplasmic TNF levels were increased in normal tissues from IL-2 treated animals, and treatment with CNI-1493 maintained TNF at control levels. The degree of apoptosis measured by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling staining of tumors following IL-2 therapy was not reduced compared with IL-2 cotreated with CNI-1493. In contrast, apoptosis in the liver and lung parenchyma following IL-2 therapy was blocked completely by cotreatment with CNI-1493. Taken together, these data showed that low and infrequent doses of CNI-1493 markedly protected animals from IL-2 systemic toxicities whereas not affecting tumor response to IL-2 therapy. With the protection afforded by CNI-1493 treatment, IL-2 therapy dose levels could be increased to provide significant antitumor effects in animals with established hepatomas.