946 resultados para Interferon-
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
Double-stranded RNA-activated protein kinase (PKR) plays an important rote in interferon-induced antiviral responses, and is also involved in intracellular signaling pathways, including the apoptosis, proliferation, and transcription pathways. In the present study, a PKR-like gene was cloned and characterized from rare minnow Gobiocypris rarus. The full length of the rare minnow PKR-like (GrPKZ) cDNA is 1946 bp in Length and encodes a polypeptide of 503 amino acids with an estimated molecular mass of 57,355 Da and a predicted isoelectric point of 5.83. Analysis of the deduced amino acid sequence indicated that the mature peptide contains two Zalpha domains and one S_TKc domain, and is most similar to the crucian carp (Carassius auratus) PKR-like amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed that GrPKZ mRNA expression is at low levels in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus, GrPKZ expression was up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). Following infection with Aeromonas hydrophila, GrPKZ transcripts were induced at 24 h post-injection (P < 0.05) and returned to control levels at 120 h post-injection. These data imply that GrPKZ is involved in antiviral defense and Toll-like receptor 4 signaling pathway in bacterial infection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The genes of IRF-1 and IRF-7 have been cloned from the mandarin fish (Siniperca chuatsi). The IRF-1 gene has 4919 nucleotides (nt) and contains 10exons and 9introns, with an open reading frame (ORF) of 903 ntencoding301 aa. The IRF-7 gene has 6057 nt and also contains 10exons and 9introns, with an ORF of 1308 nt encoding 436 aa. The IRF-1 and IRF-7 genes have only one copy each in the genome. The transcription of IRF-1 and IRF-7 in different organs was analyzed by real-time PCR, and both molecules were constitutively expressed. The IRF-I and IRF-7 mRNAs were abundant in gill, spleen, kidney and pronephros. The temporal transcriptional changes for IRF-1, IRF-7 and Mx were investigated within 48 h after poly I: C stimulation in liver, gill, spleen and pronephros. An increased transcription was detected for IRF-1 and IRF-7 12 h post-stimulation, being earlier than the transcription of Mx protein; however, IRF-1 and IRF-7 transcription decreased while the Mx protein was stable at 48 h post-stimulation. (c) 2007 Published by Elsevier B.V.
Resumo:
Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Virus infection of mammalian cells activates an innate antiviral immune response characterized by production of interferon (IFN) and the subsequent transcriptional upregulation of IFN-stimulated genes (ISGs) by the JAK-STAT signaling pathway. Here, we report that a fish cell line, crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells, can produce IFN activity and then form an antiviral state after infection with UV-inactivated grass carp hemorrhagic virus (GCHV), a double-stranded (ds) RNA virus. From UV-inactivated GCHV-infected CAB cells, 15 pivotal genes were cloned and sequenced, and all of them were shown to be involved in IFN antiviral innate immune response. These IFN system genes include the dsRNA signal sensing factor TLR3, IFN, IFN signal transduction factor STAT1, IFN regulatory factor IRF7, putative IFN antiviral effectors Mx1, Mx2, PKR-like, Viperin, IFI56, and other IFN stimulated genes (ISGs) IFI58, ISG15-1, ISG15-2, USP18, Gig1 and Gig2. The identified fish IFN system genes were highly induced by active GCHV, UV-inactivated GCHV, CAB IFN or poly(I).poly(C), and showed similar expression patterns to mammals. The data indicate that an IFN antiviral innate immune response similar to that in mammals exists in the UV-inactivated GCHV-infected CAB cells, and the IFN response contributes to the formation of an antiviral state probably through JAK-STAT signaling pathway. This study provides strong evidence for existence of IFN antiviral innate immune response in fish, and will assist in elucidating the origin and evolution of vertebrate IFN system. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The gene of interferon regulatory factor-2 (IRF-2) has been cloned from the mandarin fish (Siniperca chuatsi). The IRF-2 gene has 6,418 nucleotides (nt) and contains eight exons and seven introns, encoding two mRNAs. The two IRF-2 mRNAs each contained an open reading frame of 873 nt, which both translate into the same 291 amino acids but differed in their 5' untranslated region: one mRNA was transcribed initially from the exon 1 bypassing exon 2, while the other was transcribed from the exon 2. The microsatellites (CA repeats) could be found in the carboxyl terminal region of mandarin fish IRF-2, which result in the truncated form molecules. The microsatellites' polymorphism was investigated, and eight alleles were found in 16 individuals. The microsatellites were also examined in IRF-2 of several freshwater perciform fishes. The transcription of the IRF-2 in different tissues with or without poly inosine-cytidine stimulation was analyzed by real-time PCR, and the constitutive transcription of both molecules could be detected in all the tissues examined.
Resumo:
A viperin gene has been cloned from the mandarin fish (Siniperca chuatsi). From the first transcription initiation site, the mandarin fish viperin gene extends 3163 nucleotides to the end of the 3' untranslated region, and it contains six exons and five introns. The open reading frame of the viperin transcript has 1062 nucleotides which encode a 354 amino acid peptide. The amino acid sequence of mandarin fish viperin shows high identities with its homologues in teleosts and mammals except for the first 70 amino acids. A characteristic feature in the viperin promoter region was the presence of five putative ICSBP (IRF8) binding sites and one IRFI binding site. The viperin gene expressed mainly in lymphoid tissues before stimulation, but its expression can be examined in almost all the organs investigated after stimulation with virus or Poly I:C. The expression pattern and promoter sequence may be considered as the indirect evidence that the transcription of viperin is regulated by interferons or interferon induced genes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The double-stranded-RNA-dependent protein kinase (PKR) is an important component in an antiviral defence pathway that is mediated by interferon (IFN) in vertebrates. Previously, some important IFN system genes had been identified from an IFN-producing CAB (crucian carp Carassius auratus blastulae embryonic) cells after treatment with UV-inactivated GCHV (grass carp haemorrhage virus). Here, a fish PKR-like gene, named CaPKR-like, is cloned and sequenced from the same virally infected CAB cells. It has 2192 base pairs in length with a largest open reading frame (ORF) encoding a protein of 513 amino acid residues. BLAST search reveals that the putative CaPKR-like protein is most homologous to human PKR and also has a high-level homology with all members of a family of eIF2alpha kinases. Structurally, CaPKR-like possesses a conserved C-terminal catalytic domain of eIF2alpha kinase family and the most similarity to mammalian PKRs. Within its N-terminus, there are no dsRNA-binding domains conserved in mammalian PKRs instead of two putative Z-DNA binding domains (Zalpha). Like mammalian PKRs, CaPKR-like had a very low level of constitutive expression in normal CAB cells but was up-regulated in response to active GCHV, UV-inactivated GCHV and CAB IFN, implying that the transcriptional activation of CaPKR-like by viral infection is mediated possibly by newly produced CAB IFN, which was further supported by using cycloheximide, a potent inhibitor of protein synthesis. The results together suggested that CaPKR-like was the first identified fish gene most similar to mammalian PKRs. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Interferon (IFN) exerts its antiviral effects mainly through activation of a subset of IFN-stimulated genes (ISG), but relatively few of fish ISGs have been isolated and characterized so far. Here, we report two fish ISGs, termed CaIF158 and CaIF156, cloned from a subtractive cDNA library constructed with mRNAs obtained from crucian carp (Carassius auratus L.) blastulae embryonic (CAB) cells infected by UV-inactivated GCHV and mock-infected cells. Database search revealed that both ISGs had a high-level homology with all members of a well conserved gene family with multiple tetratricopeptide repeat (TPR) motifs, including human IF160, IF158, IF156, IFI54 and their homologues in some other mammalian species. The transcripts of CaIF158 and CaIF156 were undetectable in CAB cells but could be induced by active GCHV, UV-inactivated GCHV or CAB IFN. Analysis of expression difference between them and IFN signal factors, CaSTAT1 and CaIRF7, indicated that their transcriptions were mediated possibly through JAK-STAT signal pathway, which was further supported by the induction analysis in UV-inactivated GCHV infected, IFN-treated and untreated cells in the presence or absence of cycloheximide (CHX), a potent inhibitor of protein synthesis. In addition, a pufferfish (Fugu rubrides) DNA sequence representing putative FrIFI56 was also revealed when CalF158 and CalF156 were used to search the pufferfish genome database. Phylogenetic analysis showed that these fish ISGs form a unique clad independent of mammalian homologues, reflecting a distant evolutionary relationship from mammals. These studies identified the first teleost IFI56 and IFI58 orthologues. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
Type I interferon (IFN) exerts its pleiotropic effects mainly through the JAK-STAT signaling pathway, which is presently best described in mammals. By subtractive suppression hybridization, two fish signaling factors, JAK1 and STAT1, had been identified in the IFN-induced crucian carp Carassius auratus L. blastulae embryonic (CAB) cells after treatment with UV-inactivated grass carp hemorrhagic virus (GCHV). Further, the full-length cDNA of STAT1, termed CaSTAT1, was obtained. It contains 2926 bp and encodes a protein of 718 aa. CaSTAT1 is most similar to rat STAT1 with 59% identity overall and displays all highly conserved domains that the STAT family possesses. Like human STAT1beta, it lacks the C-terminus acting as transcriptional activation domain in mammals. By contrast, only a single transcript was detected in virus-induced CAB cells. Expression analysis showed that CaSTAT1 could be activated by stimulation of CAB cells with poly I:C, active GCHV, UV-inactivated GCHV or CAB IFN, and displayed diverse expression patterns similar to that of mammalian STATI. Additionally, the expression of an antiviral gene CaMx1 was also induced under the same conditions, and expression difference between CaSTAT1 and CaMx1 was revealed by induction of CAB IFN. These results provide molecular evidence supporting the notion that the fish IFN signaling transduction pathway is similar to that in mammals. Fish IFN exerts its multiple functions, at least antiviral action, through a JAK-STAT pathway. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
UV-inactivated grass carp hemorrhage virus (GCHV) can induce high titer of interferon in cultured CAB (crucian carp (Carassius auratus L.) blastulae) cells, and thus defend host cells against the virus invasion. The mechanism is proposed that an antiviral state should be established in the host cells by activating expression of a set of antiviral-relevant genes. In this study, suppressive subtractive hybridization is applied to constructing a subtracted cDNA library with mRNAs isolated from UV-inactivated GCHV infected and mock-infected CAB cells. 272 differential cDNA fragments are identified by both PCR and dot blot from the subtractive cDNA library. Sequencing analysis reveals 69 genes, including 46 known gene homologues, and 23 unknown putative genes. The known genes include the genes involved in interferon signaling pathways, such as Stat1 and Jak1, the antiviral genes, such as Mx and Viperin, and a set of interferon-stimulated genes observed in mammalian cells. Most of the unknown putative genes contain AU-rich element in their sequences. Differential expressions of these genes are further confirmed by virtual Northern blot and RT-PCR. The data imply that UV-inactivated GCHV is not only able to induce production of interferon in the infected CAB cells, but also leads to the expression of a series of antiviral-relevant genes or immune-relevant genes, and therefore reveals that the signaling pathway of interferon system and antiviral mechanism in fish are similar to those in mammals.
Resumo:
干扰素(IFNs)是最早发现的具有广泛用途的一类细胞因子,IFN-α通过JAK/STAT信号途径调控机体一系列生理和病理反应。至今尚未发现类干扰素的小分子。我们前期研究发现天然产物毛蕊异黄酮可激活干扰素诱导的JAK/STAT信号途径。为发现类干扰素小分子、获得小分子探针,本课题拟建立成熟的JAK/STAT信号途径的筛选模型,合成毛蕊异黄酮及其类似物,研究这些化合物的构效关系,进而尝试通过共价键标记生物素或香豆素来直接研究它们与相关受体的作用。 从异香草醛出发经7步合成反应得到了毛蕊异黄酮。采用平行合成策略得到异黄酮类化合物;采用分支式合成策略,以取代苯乙酸作为合成砌块,获得具有与异黄酮类似结构的香豆素、3-芳基喹诺酮。与分离得到的黄酮类化合物,构建了一个包括异黄酮、黄酮、香豆素、3-芳基喹诺酮在内的化合物库。 建立了包含IFN-α刺激反应元件 (ISRE)的荧光素酶报告基因体系,通过筛选化合物库中的化合物,发现异黄酮骨架为激活JAK/STAT信号途径必须结构、毛蕊异黄酮7-位酚羟基被取代后活性丧失。根据以上结果,对毛蕊异黄酮3′-位标记物的合成进行了初步尝试。 发现山茱萸科植物青荚叶(Helwingia japonica (Thunb.) Dietr.)有抑制蛋白酪氨酸磷酸酯酶1B(PTP1B)的活性。从其地上部分95%乙醇提取物的乙酸乙酯部分分离得到5个化合物,应用波谱方法及与已知品对照的手段鉴定它们为p-menth-2-en-1β, 4β, 8-triol (Z-1)、blumenol A (Z-2)、2′,3′,4′,5′,6′-五羟基查尔酮(Z-3)、洋芹素7-O-β-D-吡喃葡萄糖苷(Z-4)、木犀草素7-O-β-D-吡喃葡萄糖苷(Z-5). Interferons (IFNs) are one kind of cytokines with broad functions. IFN-α mediates series physiological and pathological changes of human body via JAK/STAT pathway. Untill now, no IFNs-like small molecules are discovered. In our preliminary experiment, the natural product calycosin has been observed to activate JAK/STAT pathway. Therefore, we establish a luciferase reporter gene system and synthesize calycosin and its analogues to reveal their structure-activity relationship (SAR). Besides, in order to prove that calycosin activates JAK/STAT pathway through IFN receptor, we attempted to tag it with biotin or coumarin by covalent bonding. Calycosin was synthesized from isovanillin via seven steps. Other isoflavones were obtained by parallel synthesis; coumarins and quinolones were prepared through divergent synthesis, using substituted phenylacetic acids as building blocks. Combing with natural flavones, a small molecule library was established. A luciferase reporter gene system, consisting of 5 copies of the ISRE (interferon-stimulated response element), was used for screening of small molecules from that library. We found that the core-structure of isoflavone was necessary, and if the 7-OH is substituted, the activity slumps. According to our observation, we tried to tag biotin or coumarin at 3′-OH of calycosin. The 95% ethanol extract of the aerial parts of Helwingia japonica (Thunb.) Dietr. showed protein tyrosine phosphatase 1B (PTP1B) inhibitory activity. Five compounds were isolated. On the basis of spectral data or by comparison with authentic samples, they were identified as p-menth-2-en-1β,4β,8-triol (1), blumenol A (2), 2′,3′,4′,5′,6′-pentahydroxychalcone (3), apigenin 7-O-β-D-glucopyranoside (4), and luteolin 7-O-β-D-glucopyranoside (5).
Resumo:
Purpose: To estimate the biological risks to the immune system of the type of space radiation, 12C6+, encountered by cosmonauts during long-term travel in space. Materials and methods: The Kun-Ming strain mice were whole-body irradiated by 12C6+ ion with 0, 0.01, 0.05, 0.075, 0.2, 0.3, 0.5, 0.75, 1 or 2 Gy, at a dose rate of 1 Gy/min. At 35 days after irradiation, the thymus and spleen weights were measured, the natural killer (NK) cells activity of spleen was determined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), and the interferon-gamma (IFN-gamma) levels in serum and thymus were detected with enzyme-linked immunosorbent assays (ELISA). Results: The results showed that the thymus weight, IFN-gamma levels in serum and the activity of splenic NK-cells had significantly increased at a dose of 0.05 Gy. With further dose increase, the weight of spleen continued to increase but the weight of thymus, IFN-gamma level and NK-cells activity declined. Conclusions: These results suggest that the dose of 0.05 Gy irradiation has a stimulatory effect on mouse immunity; this effect declined with increasing dose.
Resumo:
To study the influence of Hypericum perforatum extract (HPE) on piglets infected with porcine respiratory and reproductive syndrome virus (PRRSV), enzyme-labeled immunosorbent assay (ELISA) and cytopathic effect (CPE) were used to determine in vitro whether HPE could induce swine pulmonary alveolar macrophages (PAMs) to secrete IFN-gamma, and whether PRRSV titers in PAMs were affected by the levels of HPE-induced IFN-gamma. HPE (200 mg kg(-1)) was administrated by oral gavage to piglets infected with the PRRSV in vivo to observe whether HPE affected the viremia, lung viral titers, and weight gain of piglets infected with PRRSV. The results showed that HPE was capable of inducing PAMs to produce IFN-gamma in a dose dependent manner and HPE pretreatment was capable of significantly reducing PRRSV viral titers in PAMs (P<0.01). Administration of HPE to the PRRSV-infected animals significantly (P<0.05) reduced viremia over time as compared with the PRRSV-infected animals. But there was not significant decrease in lung viral titers at day 21 post-infection between the HPE-treated animals and the PRRSV-infected control piglets. There were no significant differences in weight gain over time among the HPE-treatment animals, the normal control, and the HPE control animals. The PRRSV-infected animals caused significant (P<0.01) growth retardation as compared with the HPE controls and the normal piglets. It suggested that HPE might be an effective novel therapeutic approach to diminish the PRRSV-induced disease in swine.
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.