923 resultados para Information retrieval, dysorthography, dyslexia, finite state machines, readability
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.
Resumo:
Two experiments examined the claim for distinct implicit and explicit learning modes in the artificial grammar-learning task (Reber, 1967, 1989). Subjects initially attempted to memorize strings of letters generated by a finite-state grammar and then classified new grammatical and nongrammatical strings. Experiment 1 showed that subjects' assessment of isolated parts of strings was sufficient to account for their classification performance but that the rules elicited in free report were not sufficient. Experiment 2 showed that performing a concurrent random number generation task under different priorities interfered with free report and classification performance equally. Furthermore, giving different groups of subjects incidental or intentional learning instructions did not affect classification or free report.
Resumo:
In general, ranking entities (resources) on the Semantic Web (SW) is subject to importance, relevance, and query length. Few existing SW search systems cover all of these aspects. Moreover, many existing efforts simply reuse the technologies from conventional Information Retrieval (IR), which are not designed for SW data. This paper proposes a ranking mechanism, which includes all three categories of rankings and are tailored to SW data.
Resumo:
An indoor rowing machine has been modified for functional electrical stimulation (FES) assisted rowing exercise in paraplegia. To perform the rowing manoeuvre successfully, however, the voluntarily controlled upper body movements must be co-ordinated with the movements of the electrically stimulated paralysed legs. To achieve such co-ordination, an automatic FES controller was developed that employs two levels of hierarchy. At the upper level, a finite state controller identifies the state or phase of the rowing cycle and activates the appropriate lower-level controller, in which electrical stimulation to the paralysed leg muscles is applied with reference to switching curves representing the desired seat velocity as a function of the seat position. In a pilot study, the hierarchical control of FES rowing was shown to be intuitive, reliable and easy to use. Compared with open-loop control of stimulation, all three variants of the closed-loop switching curve controllers used less muscle stimulation per rowing cycle (73% of the open-loop control on average). Further, the closed-loop controller that used switching curves derived from normal rowing kinematics used the lowest muscle stimulation (65% of the open-loop control) and was the most convenient to use for the client.
Resumo:
Search has become a hot topic in Internet computing, with rival search engines battling to become the de facto Web portal, harnessing search algorithms to wade through information on a scale undreamed of by early information retrieval (IR) pioneers. This article examines how search has matured from its roots in specialized IR systems to become a key foundation of the Web. The authors describe new challenges posed by the Web's scale, and show how search is changing the nature of the Web as much as the Web has changed the nature of search
Resumo:
The Web's link structure (termed the Web Graph) is a richly connected set of Web pages. Current applications use this graph for indexing and information retrieval purposes. In contrast the relationship between Web Graph and application is reversed by letting the structure of the Web Graph influence the behaviour of an application. Presents a novel Web crawling agent, AlienBot, the output of which is orthogonally coupled to the enemy generation strategy of a computer game. The Web Graph guides AlienBot, causing it to generate a stochastic process. Shows the effectiveness of such unorthodox coupling to both the playability of the game and the heuristics of the Web crawler. In addition, presents the results of the sample of Web pages collected by the crawling process. In particular, shows: how AlienBot was able to identify the power law inherent in the link structure of the Web; that 61.74 per cent of Web pages use some form of scripting technology; that the size of the Web can be estimated at just over 5.2 billion pages; and that less than 7 per cent of Web pages fully comply with some variant of (X)HTML.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
This paper presents the notion of Context-based Activity Design (CoBAD) that represents context with its dynamic changes and normative activities in an interactive system design. The development of CoBAD requires an appropriate context ontology model and inference mechanisms. The incorporation of norms and information field theory into Context State Transition Model, and the implementation of new conflict resolution strategies based on the specific situation are discussed. A demonstration of CoBAD using a human agent scenario in a smart home is also presented. Finally, a method of treating conflicting norms in multiple information fields is proposed.
Resumo:
A quasi-optical interferometric technique capable of measuring antenna phase patterns without the need for a heterodyne receiver is presented. It is particularly suited to the characterization of terahertz antennas feeding power detectors or mixers employing quasi-optical local oscillator injection. Examples of recorded antenna phase patterns at frequencies of 1.4 and 2.5 THz using homodyne detectors are presented. To our knowledge, these are the highest frequency antenna phase patterns ever recovered. Knowledge of both the amplitude and phase patterns in the far field enable a Gauss-Hermite or Gauss-Laguerre beam-mode analysis to be carried out for the antenna, of importance in performance optimization calculations, such as antenna gain and beam efficiency parameters at the design and prototype stage of antenna development. A full description of the beam would also be required if the antenna is to be used to feed a quasi-optical system in the near-field to far-field transition region. This situation could often arise when the device is fitted directly at the back of telescopes in flying observatories. A further benefit of the proposed technique is simplicity for characterizing systems in situ, an advantage of considerable importance as in many situations, the components may not be removable for further characterization once assembled. The proposed methodology is generic and should be useful across the wider sensing community, e.g., in single detector acoustic imaging or in adaptive imaging array applications. Furthermore, it is applicable across other frequencies of the EM spectrum, provided adequate spatial and temporal phase stability of the source can be maintained throughout the measurement process. Phase information retrieval is also of importance to emergent research areas, such as band-gap structure characterization, meta-materials research, electromagnetic cloaking, slow light, super-lens design as well as near-field and virtual imaging applications.
Resumo:
Computational formalisms have been pushing the boundaries of the field of computing for the last 80 years and much debate has surrounded what computing entails; what it is, and what it is not. This paper seeks to explore the boundaries of the ideas of computation and provide a framework for enabling a constructive discussion of computational ideas. First, a review of computing is given, ranging from Turing Machines to interactive computing. Then, a variety of natural physical systems are considered for their computational qualities. From this exploration, a framework is presented under which all dynamical systems can be considered as instances of the class of abstract computational platforms. An abstract computational platform is defined by both its intrinsic dynamics and how it allows computation that is meaningful to an external agent through the configuration of constraints upon those dynamics. It is asserted that a platform’s computational expressiveness is directly related to the freedom with which constraints can be placed. Finally, the requirements for a formal constraint description language are considered and it is proposed that Abstract State Machines may provide a reasonable basis for such a language.
Resumo:
Information systems integration becomes critical in enhancing organisational competitiveness through effective use of information resource provided by the whole host of information systems. Information systems integration in its nature is a process of bringing about the capability of communication and information exchange between systems; while interoperability, often as the result of systems integration, is such a capability. However currently there is a lack of theoretical foundation for representation and measure of the interoperability in organisations. Organisational semiotics provides a theoretical foundation for systems interoperability. A notion of ‘semiotic interoperability’ is proposed in this paper as a paradigm, guiding systems integration and measuring degree of interoperability, covering aspects from physical properties, transmission structure of signs, placing emphasis on communicating meaning, intention to social consequence of information.
Resumo:
Social network has gained remarkable attention in the last decade. Accessing social network sites such as Twitter, Facebook LinkedIn and Google+ through the internet and the web 2.0 technologies has become more affordable. People are becoming more interested in and relying on social network for information, news and opinion of other users on diverse subject matters. The heavy reliance on social network sites causes them to generate massive data characterised by three computational issues namely; size, noise and dynamism. These issues often make social network data very complex to analyse manually, resulting in the pertinent use of computational means of analysing them. Data mining provides a wide range of techniques for detecting useful knowledge from massive datasets like trends, patterns and rules [44]. Data mining techniques are used for information retrieval, statistical modelling and machine learning. These techniques employ data pre-processing, data analysis, and data interpretation processes in the course of data analysis. This survey discusses different data mining techniques used in mining diverse aspects of the social network over decades going from the historical techniques to the up-to-date models, including our novel technique named TRCM. All the techniques covered in this survey are listed in the Table.1 including the tools employed as well as names of their authors.
Resumo:
We review recent progress in understanding the role of sea ice, land surface, stratosphere, and aerosols in decadal-scale predictability and discuss the perspectives for improving the predictive capabilities of current Earth system models (ESMs). These constituents have received relatively little attention because their contribution to the slow climatic manifold is controversial in comparison to that of the large heat capacity of the oceans. Furthermore, their initialization as well as their representation in state-of-the-art climate models remains a challenge. Numerous extraoceanic processes that could be active over the decadal range are proposed. Potential predictability associated with the aforementioned, poorly represented, and scarcely observed constituents of the climate system has been primarily inspected through numerical simulations performed under idealized experimental settings. The impact, however, on practical decadal predictions, conducted with realistically initialized full-fledged climate models, is still largely unexploited. Enhancing initial-value predictability through an improved model initialization appears to be a viable option for land surface, sea ice, and, marginally, the stratosphere. Similarly, capturing future aerosol emission storylines might lead to an improved representation of both global and regional short-term climatic changes. In addition to these factors, a key role on the overall predictive ability of ESMs is expected to be played by an accurate representation of processes associated with specific components of the climate system. These act as “signal carriers,” transferring across the climatic phase space the information associated with the initial state and boundary forcings, and dynamically bridging different (otherwise unconnected) subsystems. Through this mechanism, Earth system components trigger low-frequency variability modes, thus extending the predictability beyond the seasonal scale.
Resumo:
This paper presents a GIS-based multicriteria flood risk assessment and mapping approach applied to coastal drainage basins where hydrological data are not available. It involves risk to different types of possible processes: coastal inundation (storm surge), river, estuarine and flash flood, either at urban or natural areas, and fords. Based on the causes of these processes, several environmental indicators were taken to build-up the risk assessment. Geoindicators include geological-geomorphologic proprieties of Quaternary sedimentary units, water table, drainage basin morphometry, coastal dynamics, beach morphodynamics and microclimatic characteristics. Bioindicators involve coastal plain and low slope native vegetation categories and two alteration states. Anthropogenic indicators encompass land use categories properties such as: type, occupation density, urban structure type and occupation consolidation degree. The selected indicators were stored within an expert Geoenvironmental Information System developed for the State of Sao Paulo Coastal Zone (SIIGAL), which attributes were mathematically classified through deterministic approaches, in order to estimate natural susceptibilities (Sn), human-induced susceptibilities (Sa), return period of rain events (Ri), potential damages (Dp) and the risk classification (R), according to the equation R=(Sn.Sa.Ri).Dp. Thematic maps were automatically processed within the SIIGAL, in which automata cells (""geoenvironmental management units"") aggregating geological-geomorphologic and land use/native vegetation categories were the units of classification. The method has been applied to the Northern Littoral of the State of Sao Paulo (Brazil) in 32 small drainage basins, demonstrating to be very useful for coastal zone public politics, civil defense programs and flood management.